Treatment of Aspergillosis, Candidiasis, and Cryptococcosis with DectiSomes

Cells

Animal

Poster 90 AAAM 2022

Zachary A. Lewis^a, <u>Richard B. Meagher^{b,c}</u>, Suresh Ambati^b, Xiaorong Lin^a ^aDepartment of Microbiology, University of Georgia, Athens, GA. 30602. ^bDepartment of Genetics, University of Georgia, Athens, GA. 30602.^cPresentor

See related Poster 89

Abstract

DectiSomes are lipid nanoparticles (e.g., liposomes) carrying an anti-infective drug and coated with pathogen receptor protein that targets them to pathogenic cells.[1] We have demonstrated the pan-antifungal efficacy of DectiSomes by using the carbohydrate recognition domains (CRDs) of three C-type lectin pathogen receptors Dectin-1 (CLEC7A), Dectin-2 (CLEC4N), and the DCS12 isoform of DC-SIGN (CD209) to target Amphotericin B loaded liposomes to Aspergillus fumigatus, Candida albicans, and Cryptococcus neoformans. These three pathogens represent 1.2 billion years of fungal pathogen evolution and divergence. The three classes of DectiSomes, DEC1-AmB-LLs[2], DEC2-AmB-LLs[3], and DCS12-AmB-LLs[4], bound all three species order(s) of magnitude better than control liposomes, including untargeted AmB-LLs (analogous to Ambisome®) and bovine serum albumin coated BSA-AmB-LLs. The various DectiSomes killed these fungal pathogens in vitro order(s) of magnitude more efficiently than control liposomes and lowered the effective dose ED90 10- to 20-fold [2,3,4]. Oral aspiration and intravenous injection, respectively, of DectiSomes reduced the fungal burden of A. fumigatus in the lungs[5] and C. albicans in the kidneys[6] 10-fold compared to the untargeted control liposomes. DectiSomes improved the survival of mice with pulmonary aspergillosis[5] and invasive candidiasis[6]. Using the combination of novel and synthetic techniques we have developed, the production of C-type lectin-targeted DectiSomes is 1,000-times less expensive than monoclonal targeted immunoliposomes[1]. Low cost and dramatically improved efficacy should encourage pharmaceutical companies to commit time and resources to the clinical development of DectiSomes as pan-antifungal therapeutics.

Publications

 Meagher, R., Lewis, Z., Ambali, S. & Lin, X. Alming for a bullis-eye: Targeting antilingate to fingli with dechn-decorated lipscomes. PLoS Pathep 17, 1-7 (2021).
10.1371/journal.ppat.1009699. https://www.ncbi.nlm.nih.gov/pubmed/34293050.
Ambali, S., Ferarro, A.R., Kang, S.E., Lin, J., Lin, X., Momany, M., et al. Dechn-1 Targeted Antilungal Lipscomes Exhibit Enhanced Efficacy. mSphere 4, 1-16 (2019).
10.122/mSphere 00125-19. https://www.ncbi.nlm.nih.gov/pubmed/31660815.
Ambali, S., Ellis, E.C., Lin, J., Lin, X., Lewis, Z.A. & Meagher, R.B. Declina-2-Targeted Antifungal Lipscomes Exhibit Enhanced Efficacy. mSphere 4, 1-16 (2019).
10.122/mSphere 00175-19. https://www.ncbi.nin.nih.gov/pubmed/31660815.
Ambali, S., Pham, T., Lewis, Z.A., Lin, X. & Meagher, R.B. Dc-SIGN Targets Amploterion B-Loaded Liposcomes to Diverse Pathogenic Fung. Fungal Biol and Biotech 8, 1-13 (2021). https://doi.org/10.1186/s40694-021-00126-3. https://doi.org/10.1186/s40694-021-00126-3.

5. Ambail, S., Ellis, E.C., Pham, T., Lewis, Z.A., Lin, X. & Meagher, R.B. Antifungal Liposomes Directed by Dectin-2 Offer a Promising Therapeutic Option for Pulmonary Aspergillosis. mBio 12, 1-8 (2021), 10.1128/mBio.00030-21. https://www.ncbi.nlm.nih.gov/pubmed/33622715.

 Ambati, S., Pham, T., Lewis, Z.A., Lin, X. & Meagher, R.B. DectiSomes- Glycan Targeting of Liposomal Amphotericin B Improves the Treatment of Disseminated Candidiasis. Antimicrob Agents Chemother (2021). https://journals.asm.org/doi/10.1128/AAC.01467-21.

Funding

R.B.M., S.A., and Z.A.L. received funding from the National Institutes of Health, NIAID (grants R21A1144498 and R21A1148890), the Georgia Research Alliance, and the University of Georgia Research Foundation (UGARF). VL. received funding from NIAID (R21A1150641) and UGARF. These funding agencies are not responsible for the content of this coster.

Ethical considerations

All mouse protocols met guidelines for the ethical treatment of non-human animals outlined by the U.S. Federal government and were approved by UGA's institutional Animal Care and Use Committee as described in our animal use protocols, AUPs A2019 08-031-A1 and A2018 12-009-Y2-A2.

1B. DectiSomes target antifungal drugs specifically to fungal cells and away - Dectin-1 monom from mammalian cells. Here the CRD is from Dectin-1 Un-targeted antifungal DectiSomes: Targeted and dime drug-loaded liposomes antifungal drug-loaded Antifungal drug micelles, and free drug OO Micelles liposomes Liposome fungal beta-glucan 0 exopolysaccharide Fungal

Fig. 1. DectiSomes are liposomes designed to target antifungal drugs specifically to fungal cells. A. Design of a DectiSome. One iteration of a DectiSome is an Amphotericin B-loaded liposome coated with the glycan recognition domain of Dectin-1. The Dectin-1 monomers float freely and form even more active multimers that bind their cognate ligands. B. Specificity of a DectiSome. DectiSomes concentrate liposomal drugs on fungal cells and their exopolysaccharide matrices (right side). Current antifungal drugs are un-targeted (left side) and distribute drugs almost equally among fungal cells and host cells. Infection centers with yeast (Y) or filamentous (F) cell morphologies are shown.

C-Type Lectin Pathogen	Cognate ligands	Targeted pathogens that
Receptor (gene)		were tested
Dectin-1	beta-glucan oligomers	A. fumigatus,
(CLEC7A)		C. albicans,
		C. neoformans
Dectin-2	alpha-mannan oligomers,	A. fumigatus,
(CLEC4N),	manno-proteins, and	C. albicans,
	mannose-capped	C. neoformans
	lipoarabinomannan ManLAM	
DC-SIGN (CD209)	mannose-rich and fucosylated	A. fumigatus,
Isoforms DCS12	glycans (e.g., the Lewis ^X	C. albicans,
and DCS78 have	trisaccharide), ManLAM, and	C. neoformans
different neck	lipomannans often found in	
repeats.	protein conjugates	

Table 1. C-Type Lectin Pathogen Receptors we've shown successfully target DectiSomes to diverse fungal pathogens.

Fig. 2. DC-SIGN targeted liposomes bind efficiently to three fungal pathogens: examples of DectiSome specificity. Liposomes loaded with AmB and targeted by two isoforms of human DC-SIGN, DCS12-AmB-LLs and DCS78-AmB-LLs, bound more efficiently and significantly to the exopolysaccharide matrices of three fungal pathogens relative to untargeted AmB-LLs or BSA coated BSA-AmB-LLs. a, c, e. Representative photographic images of red fluorescent liposomes binding to bright field images of fungal cells. a. C. albicans (10X magnification). c. A. fumigatus (10X magnification), e. C. neoformans (20X magnification), b. d. f. The relative area of red fluorescent liposome binding (log10) was quantified as shown in scatter bar plots on the right. f. The scale of the plot for C. neoformans had to be expanded from three to five logs to accommodate more widely distributed data. Standard errors and P values are indicted. N=10 images for each bar. In general, the DCS12 isoform performed better than the DCS78 isoform.

Fig. 3. A metabolic activity assay shows DCS12-AmB-LLs were order(s) of magnitude more effective at inhibiting and/or killing *C. albicans* and *A. fumigatus* in vitro than untargeted liposomal AmB (AmB-LLs) and significantly reduced the effective dose of AmB.

Fig. 5. Intravenous & oropharyngeal

administration of Dectin-2 targeted DectiSomes, DEC2-AmB-LLs delivering a very low dose of AmB (0.2 mg/kg) significantly improved the survival of mice with (a) invasive candidiasis and (b) pulmonary aspergillosis.

10 15

Summary and Conclusions.

0 1 2 3 4 5 6 7 8 9 10

- 1. DectiSomes are anti-infective drug loaded liposomes targeted by pathogen receptor CRDs.
- We've shown that the CRDs from three mammalian pathogen receptors Dectin-1, Dectin-2, and DC-SIGN all are effective liposome targeting polypeptides.
- These DectiSomes recognize pathogens representing much of the diversity in the fungal kingdom.
- DectiSomes delivering relatively low doses of AmB inhibit and/or kill these fungi in vitro.
- 5. DectiSomes delivering relatively low doses of AmB dramatically improve mouse survival.
- DectiSomes are estimated to be 1,000-fold less expensive to produce that immunoliposomes.