Treatment of Aspergillosis, Candidiasis, and Cryptococcosis with DectiSomes

Zachary A. Lewis, Richard B. Meagher, Suresh Ambati, Xiaorong Lin
Department of Microbiology, University of Georgia, Athens, GA. 30602.

Abstract
DectiSomes are lipid nanoparticles (e.g., liposomes) carrying an anti-infective drug and coated with pathogen receptor protein that targets them to pathogenic cells. We have demonstrated the pan-antifungal efficacy of DectiSomes by using the carbohydrate recognition domains (CRDs) of three C-type lectin pathogen receptors Dectin-1 (CLECTA), Dectin-2 (CLEC4N), and the DC-SIGN (CDS78) to target Amphotericin B loaded liposomes to diverse fungal pathogens. The three pathogens represent 1.2 billion years of fungal pathogen evolution and divergence. The three classes of DectinSomes, DSC12-AmB-LLs, DSC2-AmB-LLs, and DC-SIGN-AmB-LLs, bound all three species order(s) of magnitude better than control liposomes, including untargeted AmB-LLs (analogous to Ambisome®) and bovine serum albumin coated BSA-AmB-LLs. The various DectiSomes killed these fungal pathogens in vitro order(s) of magnitude more efficiently than control liposomes and lowered the effective dose ED10 to 20-fold (2,3,4). Oral aspiration and intravenous injection, respectively, of DectiSomes reduced the fungal burden of A. fumigatus in the lungs and C. albicans in the kidneys. Using the combination of novel and synthetic techniques we have developed, the production of C-type lectin-targeted DectiSomes is 1,000-times less expensive than monoclonal targeted immunoliposomes (1). Low cost and dramatically improved efficacy should encourage pharmaceutical companies to commit time and resources to the clinical development of DectiSomes as pan-antifungal therapeutics.

Publications

Funding
A.S. and Z.A.L. received funding from the National Institute of Health, NIAID grants R21AI144698 and R21AI148888, the Georgia Research Alliance, and the University of Georgia Research Foundation (UGAF). R.B.M. received funding from NIAID (R21AI150641) and UGAF. These funding agencies are not responsible for the content of this paper.

Ethical considerations
All mouse protocols met guidelines for the ethical treatment of non-human animals published by the U.S. Federal government and were approved by USDA institutional animal care and use protocols. All studies were conducted in our animal use protocols. A.C.P. is a 2023-2024 National Institute of Health (NIH) K25 grant recipient.

Table 1. C-Type Lectin Pathogen Receptors we're successfully target DectiSomes to diverse fungal pathogens.

See related Poster 89

Fig. 1. DectiSomes are liposomes designed to target antifungal drugs specifically to fungal cells. A. Design of a DectiSome. One iteration of a DectiSome is an Amphotericin B-loaded liposome coated with the glynogen recognition domain of Dectin-1. The Dectin-1 monomers float freely and form even more active multimers that bind their cognate ligands. B. Specificity of a DectiSome. DectiSomes concentrate liposomal drugs on fungal cells and their exopolysaccharide matrices (right side). Current antifungal drugs are un-targeted (left side) and distribute drugs almost equally among fungal cells and host cells. Infection centers with yeast (V) or filamentous (F) cell morphologies are shown.

Fig. 2. DC-SIGN targeted liposomes bind efficiently to three fungal pathogens: examples of DectiSome specificity. Liposomes loaded with AmB and targeted by two isomers of human DC-SIGN, DC-SIGN-AmB-LLs and DC-SIGN-AmB-LLs, bound more efficiently and significantly to the exopolysaccharide matrices of three fungal pathogens relative to untargeted AmB-LLs or BSA coated BSA-AmB-LLs. A, c, e. Representative photographic images of red fluorescent liposomes binding to bright field images of fungal cells. a. C. albicans (10X magnification), c. A. fumigatus (10X magnification), e. C. neoformans (20X magnification). b, d, f. The relative area of red fluorescent liposome binding (log10) was quantified as shown in scatter bar plots on the right. d. The scale of the plot for C. neoformans had to be expanded from three to five logs to accommodate more widely distributed data. Standard errors and P values are indicated. N=10 images for each bar. In general, the DC-SIGN isoform performed better than the DCS78 isoform.

Fig. 3. A metabolic activity assay shows DCS12-AmB-LLs were order(s) of magnitude more effective at inhibiting and/or killing C. albicans and A. fumigatus in vitro than untargeted liposomal AmB (AmB-LLs) and significantly reduced the effective dose of AmB.

Fig. 4. Intravenous & oropharyngeal administration of Dectin-2 targeted DectiSomes, DSC2-AmB-LLs dramatically reduced the murine organ fungal burden for two fungal pathogens & reduced the effective dose of AmB.

Fig. 5. Intravenous & oropharyngeal administration of Dectin-2 targeted DectiSomes, DSC2-AmB-LLs delivering a very low dose of AmB (0.2 mg/kg) significantly improved the survival of mice with (a) invasive candidiasis and (b) pulmonary aspergillosis.

Summary and Conclusions
1. DectiSomes are anti-infective drug loaded liposomes targeted by pathogen receptor CRDs.
2. We've shown that the CRDs from three mammalian pattern recognition receptors Dectin-1, Dectin-2, and DC-SIGN all are effective liposome targeting polypeptides.
3. These DectiSomes recognize pathogens representing much of the diversity in the fungal kingdom.
4. DectiSomes delivering relatively low doses of AmB inhibit and/or kill these fungi in vitro.
5. DectiSomes delivering relatively low doses of AmB dramatically improve mouse survival.
6. DectiSomes are estimated to be 1,000-fold less expensive to produce than immunoliposomes.