Siderophore-based Monitoring of Posaconazole Therapy in a Rat Model of Invasive Pulmonary Aspergillosis

JIŘÍ HOUŠŤ^{1,2}, ANTON ŠKRÍBA¹, ANDREA PALYZOVÁ¹, TOMÁŠ PLUHÁČEK^{1,2}, MILOŠ PETŘÍK³, ZBYNĚK NOVÝ³, MIROSLAV POPPER⁴, VLADIMÍR HAVLÍČEK^{1,2}

¹Laboratory of Molecular Structure Characterization, Institute of Microbiology of the Czech Academy of Sciences, Vídeňská 1083, 142 00 Prague, Czechia ²Department of Analytical Chemistry, Faculty of Science, Palacký University in Olomouc, 17. listopadu 1192/12, 779 00 Olomouc, Czechia ³Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry and Czech Advanced Technology and Research Institute, Hněvotínská 1333/5, 779 00 Olomouc, Czechia ⁴Institute of Molecular and Translational Medicine, Faculty of Medicine and Dentistry, Hněvotínská 1333/5, 779 00 Olomouc, Czechia

intraperitoneal doses of cyclophosphamide (75 mg/kg). Four rats received a post-inoculation. If possible, urine was collected twice a day, and lungs and blood were taken after sacrificing the rats. Samples underwent double liquid-liquid extraction with ethyl acetate and consequent protein precipitation with pre-cooled methanol. The simultaneous detection of analytes was performed using a Dionex performed using a matrix-matched calibration or standard addition method.

References

[1] Latgé JP. et al.: Clinical Microbiology Reviews 33 (2019), 1–75.

- [2] Coffey R. et al.: Journal of Biological Chemistry 292 (2017), 12727–12734.
- [3] Haas H.: *Frontiers in Microbiology* **3** (2012), 1–10.
- [4] Kwon-Chung KJ.: *Medical Mycology* **47** (2009), 97–103.
- [5] Brown GD. et al.: Science Translational Medicine 4 (2012), 1–9.
- [6] Škríba A. et al.: Frontiers in Microbiology 9 (2018), 1–7.
- [7] Chen L. et al.: Drugs 80 (2020), 671–695.

Acknowledgement

the Czech Science Foundation of the Czech Republic (21-17044S)

Fig. 2 Cyclophosphamide induced neutropenia favoured the germination of A. fumigatus conidia to complete fungal hyphae, activating the secondary metabolism as reflected by urinal detection of TAFC, TAFB, FC, and GTX. We firstly detected these biomarkers between 24–48 hours after inoculation. Further concentration increase of these biomarkers mirrored the severity of ongoing aspergillosis and, together with the lack of posaconazole intervention, all rats had to be sacrificed. NA: not available.

Contact

If you are more interested about this topic, please, do not hesitate to contact the first author Jiří Houšť, MSc (jiri.houst@biomed.cas.cz) or the corresponding author Prof. Vladimír Havlíček (vlhavlic@biomed.cas.cz).

Biomarkers in lungs and blood (Fig. 4)

10th AAAM, February 2nd–3rd, 2022

Conclusions

We provided the first kinetic insight into the biosynthesis of triacetylfusarinine C, ferricrocin, and gliotoxin affected by multidose posaconazole therapy in a neutropenic rat model of invasive pulmonary aspergillosis.

We confirmed the utilization of siderophores as early virulence factors thanks to urinal detection of triacetylfusarinine C, its main degradation product triacetylfusarinine B, and ferricrocin between 24 and 48 hours post-inoculation.

In urine, posaconazole fungicidal effect resulted in prompt triacetylfusarinine C attenuation, followed by delayed clearance of intracellular ferricrocin. This may indicate the extent of hyphae lysis, thus showing the antifungal treatment efficiency.

Selective accumulation of posaconazole within the alveoli affected the presence of intracellular ferricrocin, indicating considerable reduction but not complete eradication of Aspergillus fumigatus.

The restored gliotoxin biosynthesis may refer to partial recovery of the alveolar immune response in the untreated rats, as the neutropenia was induced by two consecutive cyclophosphamide doses five and one days before inoculation.

Our LC-FTICR-MS-based approach allows an early and non-invasive tracking of invasive pulmonary aspergillosis. Concurrent detection of antifungals and siderophores may provide an insight into the efficiency of antimycotic therapy, thus reducing the treatment time, drug-related toxicities and adverse effects.

Fig. 4 Besides urine, we collected lungs (left) and blood (right) after rat sacrifice. POS preferably accumulates in the alveoli [7]; therefore, intracellular FC represents the key metabolite showing the extent of fungal burden. The presence of FC in the treated rats points to substantial reduction but not complete eradication of *A. fumigatus*. Gliotoxin detection in the untreated rats (representing the main circulating metabolite in the blood) may refer to the partial recovery of immune response in the alveoli, as GTX suppresses the function of alveolar macrophages. Compared to blood, neither TAFC nor TAFB had been detected in the lungs. NA: not available.