Why are NK cells important for defense against *Aspergillus*?

Thomas Lehrnbecher

Pediatric Hematology and Oncology

Frankfurt/Main, Germany

Conflict of Interest

Speakers bureau:

Astellas, Gilead Sciences, Merck/MSD, Pfizer

Advisory board:

Astellas, Basilea, Gilead Sciences, Merck/MSD

Research grant:

Gilead Sciences

NK cells

- 5-10% of leukocytes in the peripheral blood are Natural Killer cells
- NK cells are characterized by CD56 and by the absence of the T cell marker CD3
- Two main subpopulations: the cytotoxic CD56^{dim}CD16^{bright} and the immune regulatory CD56^{bright}CD16^{dim}
- Name originates from ability to kill tumor cells in vitro and in vivo without previous stimulation (e.g., ALL, AML, neuroblastoma, multiple myeloma)
- Effects: Cytolytic effect by soluble factors such as perforin, granzyme
 Immunomodulation by secretion of chemokines and cytokines

NK cells in antitumor immunotherapy

Based on the observation that NK cells kill malignant cells, multiple studies evaluate

NK cells as antitumor immunotherapy

- Phase I study evaluating autologous activated and expanded NK cells in patients with multiple myeloma
- Five patients with relapsed or refractory MM who had received 2-7 prior lines of therapy
- Four cycles with two infusions of 7.5x10⁶/kg NK cells
- Safety excellent (no grade III/IV toxicities)
- Efficacy: 2 patients with partial response (50% reduction of bone marrow infiltration), 3
 patients with stable disease

Leivas A et al Oncoimmunol 2016

NK cells and pathogens

NK cells and Aspergillus: in vitro data

NK-cells and Aspergillus fumigatus

- anti-Aspergillus activity [hyphal damage (microscopy, XTT)] [anticonidial activity (CFU)]
- Assessment of

surface/activation markers on NK cells soluble factors in supernatant effect of perforin

NK cells kill A. fumigatus hyphae, but not conidia

- Unstimulated and IL-2 stimulated human NK cells kill A. *fumigatus* hyphae, but do not affect resting *A. fumigatus* conidia
- Antifungal activity of IL-2 prestimulated NK cells significantly higher than of unstimulated NK cells

A. fumigatus hyphae, but not conidia activate NK cells

- A. *fumigatus* hyphae (c), but not resting

 (a) and germinating *A. fumigatus* conidia
 (b) up-regulate CD69 expression on
 unstimulated human NK cells
 - Percentage of activated NK cells (bar: median)

A. *fumigatus* hyphae, but not resting *A. fumigatus* conidia up-regulate CD107a expression on stimulated human NK cells

Perforin plays an important role in hyphal killing

 Hyphal killing by NK cells induced by soluble factors

- Killing activity of IL-2 stimulated NKcells significantly reduced by concanamycin A
- Killing of *Aspergillus* hyphae also induced by purified human perforin

NK cells are able kill various mucormycetes and Candida

Similar data for NK cells and C. albicans \rightarrow NK cells with broad antifungal activity

Schmid et al, Immunobiology 2013; Voigt et al J Infect Dis 2014; Schmidt et al, Mycoses 2016

Immunosuppressive effect of Aspergillus

- Coincubation with Aspergillus hyphae and germinating conidia, but not with resting conidia leads to a
 - significant decrease of IFN-γ and GM-CSF in the supernatant
 - RANTES secretion not affected
 - Note: viability of NK cells unaffected
- → immunosuppressive effect of the fungus (mycotoxins?)

Effect of Aspergillus on NK cell derived IFN-γ

Schneider et al, Oncotarget 2017

Evaluating NK cells *in vivo*: animal models

NK cells in the antifungal host defense: animal model

NK cells are main source of IFN-γ in neutropenic mice suffering from aspergillosis

 \rightarrow depletion of NK cells results in diminished IFN- γ levels in the lungs

 \rightarrow followed by increased fungal load

Clinical Data

NK cells influence risk and outcome of IA after HSCT

 \rightarrow Rationale for immunotherapy with NK cells ("adoptive immunotherapy")

Stuehler et al, J Infect Dis. 2015

Adoptive immunotherapy

Principle of adoptive immunotherapy after SCT

Adoptive Immunotherapy in aspergillosis

Granulocyte transfusions: conflicting results regarding efficacy Safety concerns in patients with pulmonary aspergillosis

Transfusion of anti-*Aspergillus* T cells "proof-of-principle" study in 10 patients after haploidentical SCT GMP conform generation possible – donor needed epitopes?

Concerns regarding safety, such as graft-versus-host disease

\rightarrow Natural Killer cells ?

Transfer of activated NK cells to neutropenic mice

- wild-type mice
- IFN-γ deficient mice

Better clearance of *A. fumigatus* from the lungs only by transfer of wild type mice

Summary – NK cells

- Both unstimulated and IL-2 stimulated NK cells exhibit killing activity against a variety of fungi (e.g. *A. fumigatus*, mucormycetes)
- Direct killing activity mediated at least in part by perforin
- Immunosuppressive effect of *A. fumigatus* by decreasing IFN-γ release
- Animal models support the important role of NK cells in the antifungal host response – more details by re-population studies needed
- NK cells as adoptive immunotherapy in patients with IFD?
 - autologous / allogeneic NK cells?
 - NK cell lines? Genetically modified NK cells?

Thank you for your attention!