Azole-resistant *Aspergillus fumigatus* at a university hospital in Belgium: A laboratory-based surveillance

Montesinos I¹, Argudin MA¹, Dodémont M¹, Dagyaran C¹, Bakkali M¹, Etienne I², Hites M³, Patteet S⁴, Lagrou K⁴ ¹ Microbiology Department ² Pneumology Department ³ Infectious Diseases Department. Hopital Erasme, Brussels. ⁴Belgian Reference Center for Mycosis, UZ Leuven. Belgium

Introduction and Purposes:

Azole-resistant *Aspergillus fumigatus* is an emerging worldwide problem with major clinical implications. Mould active triazoles are commonly used as first line treatment and prophylaxis of invasive aspergillosis (IA). Mutations in the *cyp51A* gene, represent the most commonly reported mechanism conferring azole resistance and consequently treatment failure in *A. fumigatus*.

A clinical case of *A. fumigatus* containing the TR₄₆/Y121F/T289A mutation in the *cyp51A* gene was detected in 2013 at Hôpital Erasme in Brussels. A laboratory-based surveillance of unselected *A. fumigatus* was set up in order to determine the azole-resistance frequency and resistance mechanisms.

Methods:

From June 2015 to October 2016, 212 *A. fumigatus* isolated from 109 patients hospitalized at Hôpital Erasme were screened by VIPcheckTM. All isolates able to grow on at least one of the azole-containing wells were further investigated for their minimal inhibitory concentrations (MICs) by Sensititre YeastOne Epidemiological cutoff's based on CLSI guidelines were used for interpretation of the MIC values (0.5µg/mL for posaconazole, and 1 µg/mL for both voriconazole and itraconazole). Resistance genotyping were performed by *cyp51A*, *cyp51B* and *hapE* sequencing. Demographic and clinical data were collected from patient's charts..

Results:

Two hundred and twelve positive samples for *A. fumigatus* were isolated from 109 hospitalized patients' respiratory specimens and screened by VIPcheck[™]. The most prevalent underlying diseases amongst these 109 patients were as follows: 23% (n=25) cystic fibrosis patients, 21% (n=23) lung transplant patients and 13% (n=14) chronic obstructive pulmonary disease (COPD). Seventeen percent (n=19) of these patients were diagnosed with IA, 4% (n=5) with allergic bronchopulmonary aspergillosis (ABPA), and the remaining 78% of patients (n=85) were considered to be colonized by A. fumigatus. Twenty five specimens from 14 patients had azole-resistant A. fumigatus isolates, translating into a prevalence of azole-resistance of 12.8% among all patients and of 10.5% (2/19) among patients with proven or probable IA. Mutations at the *cyp51A* gene by resistance genotyping were observed in 23 A. fumigatus isolates from 12 patients, while missense mutations were observed in two cases. The $TR_{34}/L98H$ was the most prevalent mutation (58%), followed by TR₄₆/Y121F/T289A (33%). Seven A. fumigatus isolates with mutations at the cyp51A gene were recovered from one patient, and they carried either the mutation $TR_{34}/L98H$ (n=5) or G448S (n=2). An isolate with a $TR_{34}/L98H$ mutation from another patient showed also a deletion of eight nucleotides in the cyp51B promotor. No isolates showed mutations at hapE. MICs, resistance genotyping results and clinical and demographics data from patients harboring azole-resistant A. fumigatus are summarized in Table 1. Prevalence of azoleresistance among cystic fibrosis and lung transplant patients was 16% and 17%, respectively.

	Age (years)	Underlying disease ^a	Source ^b	Colonization /IA ^c	Prior azole exposition	MIC ^d (mg/L)			
Patient n°							VRC	POS	cyp51A mutations
1	39	Cystis fibrosis	BA/S	colonization	VRZ, ITZ	1 0.5	2 1	0.5 0.25	TR ₃₄ /L98H G448S
2	81	Solid malignancy	BA/S	colonization		1	2	0.5	-
3	53	Haematological malignancy	BA/S	colonization	POS	1	2	0.5	TR ₃₄ /L98H
4	47	Cystis fibrosis	BA/S	colonization		1	1	0.5	-
5	18	Cystis fibrosis	BA/S	colonization		1	2	0.5	TR ₃₄ /L98H
6	26	Intestinal malabsorption	BA/S	colonization		1	2	0.5	TR ₃₄ /L98H
7	67	Lung transplant	BAL	probable IA		1	1	0.5	TR ₃₄ /L98H
8	58	Heart transplant	BAL	probable IA	VRZ	0.5	>8	0.5	TR ₄₆ /Y121F/T289A
9	26	Cystis fibrosis	BA/S	colonization		0.5	>8	0.5	TR ₄₆ /Y121F/T289A
10	86	Solid malignancy	BA/S	colonization		16	1	1	TR ₃₄ /L98H ^e
11	66	COPD ¹	BAL	colonization		1	2	0.5	TR ₃₄ /L98H
12	48	Lung transplant	BA/S	colonization	VRZ	0.5	>8	0.5	N248K
13	55	Lung transplant	BA/S	colonization	VRZ	0.5	>8	0.5	TR ₄₆ /Y121F/T289A
14	65	Lung transplant	BA/S	colonization		0.5	>8	0.25	TR ₄₆ /Y121F/T289A

TABLE 1 *cyp51A* mutations, MICs results and demographic data from patients harboring azole-resistant *A. fumigatus* isolated at Erasme Hospital from June 2015 to October 2016.

^a COPD, chronic obstructive pulmonary disease.

^b BA/S, bronquial aspiration or sputum; BAL, Bronchoalveolar lavage.

^c IA, invasive Aspergillosis.

^d MIC, Minimal inhibitory concentration; ITC itraconazole; VRC, voriconazole; POS, posaconazole.

^e A deletion of eight nucleotides in the *cyp51B* promotor was also observed for this isolate.

Conclusions:

This laboratory-based surveillance of unselected *A. fumigatus* and screening with VIPcheckTM identified a high prevalence of azole-resistance among all patients (approximately 13%), and among patients with probable or proven IA (approximately 11%). High prevalence was observed among cystis fibrosis and lung transplant patients. Further surveillance of azole-resistance in *A. fumigatus* at Erasme hospital is warranted.

