

10

Oxygen and Invasive Pulmonary Aspergillosis

Robert A. Cramer, Ph.D. Assistant Professor Microbiology and Immunology Geisel School of Medicine at Dartmouth ICAAC 2014, Washington DC Sept. 8th 2014

Hypoxia at site of infection occurs during invasive pulmonary aspergillosis

Grahl et al. 2011 PLoS Pathogens

Oxygen requirement for organisms

- Electron acceptor in the generation of chemical energy
- Critical for biosynthesis of sterols, fatty acids, NAD, and porphyrin (heme)
- Many human fungal pathogens, including *A. fumigatus*, are generally considered obligate aerobes
- In healthy tissues in the human body, normal O_2 levels range 2.5 9%
- In the healthy human lungs, alveolar O₂ level is around 14%.
- O_2 levels of $\leq 5\%$ are considered hypoxic (tumors and wounds)
 - <u>Ultimately, hypoxia occurs when oxygen demand is not met by oxygen availability</u>
- Within the lung, the co-occurrence of microbial infection and hypoxia is often associated with poor clinical outcomes

Oxygen and Antifungal Drugs: Some Questions

- Are drugs metabolized by the host/fungus differently under oxygen stress?
 - At the infection site, but also what about systemically in cases of hypoxemia?
- Does hypoxia influence transport of drugs to site of infection/intracellularly to the pathogen?
- Is binding of drugs to target molecules altered in hypoxia?
- Can hypoxia promote drug resistance through enhancement of target expression? Efflux pumps? Mutation?

Perhaps Some Hints From Cancer Therapies?

Effect of Hypoxia	Result	Mechanism
Distance from Vasculature	Resistance	Compromised Drug Exposure
Acidification	Resistance	Decreased Drug Uptake
Genomic Instability	Resistance	Mutation in Drug Targets/Effectors
Lack of Oxidation	Resistance	Failure to Damage DNA
Apoptosis Inhibition	Resistance	Vary

Most of these have not been directly explored in the context of Fungal Infections

Current in vitro antifungal drug screening points to a potential role for hypoxia in altering MICs/MFCs

Journal of Antimicrobial Chemotherapy (2004) 53, 743–749 DOI: 10.1093/jac/dkh153 Advance Access publication 24 March 2004

Effect of hypoxic conditions on *in vitro* susceptibility testing of amphotericin B, itraconazole and micafungin against Aspergillus and *Candida*

Peter A. Warn^{1*}, A. Sharp¹, J. Guinea¹ and David W. Denning^{1,2}

ANTIMICROBIAL AGENTS AND CHEMOTHERAPY, May 2008, p. 1873–1875 0066-4804/08/\$08.00+0 doi:10.1128/AAC.01572-07 Copyright © 2008, American Society for Microbiology. All Rights Reserved. Vol. 52, No. 5

()

Susceptibility Testing of Anidulafungin and Voriconazole Alone and in Combination against Conidia and Hyphae of *Aspergillus* spp. under Hypoxic Conditions[⊽]

Susanne Perkhofer,* Daniel Jost, Manfred P. Dierich, and Cornelia Lass-Flörl

Medical University of Innsbruck, Department of Hygiene, Microbiology and Social Medicine, Division of Hygiene and Medical Microbiology, Innsbruck, Austria

Greece, Ernst Herter 1884

"Beyond the Virulence Factor"

Working Hypothesis:

Defining infection microenvironment conditions can lead to improvements in diagnosis and treatment of IFIs

↓

New Drugs that target Fungal Specific Pathways Required for in vivo growth New interventions that <u>manipulate the infection</u> <u>microenvironmen</u>: alter fungal metabolism and improve efficacy of existing drugs Identification of immune factors that can be targeted to augment immunity or reduce immunopathogenesis in the context of immune suppression

Hypoxia induces significant changes in the transcriptome of Aspergillus fumigatus

Genes with < 4 fold change Genes with Increased mRNA Abundance ≥ 4 fold Genes with decreased mRNA Abundance ≥ 4 fold

Hypoxia alters transcript levels for ~30% of the genome in 30 minutes!

Collaborators: Dr. William Nierman, Dr. Liliana Losada et al. JCVI

In vivo transcript levels in host lung tissue correlate with *in vitro* hypoxia conditions

Defining the Aspergillus fumigatus hypoxia transcriptome and Proteome

1. Shake Flask Cultures 2. Chemostat Cultures A. Microarray and B. RNA-SEQ C. Proteomics

Hypoxia Increases Transcripts/Proteins For:

- 1. Ergosterol Biosynthesis
- 2. Amino Acid Metabolism
- 3. Respiration early time points !?
- 4. Metal Uptake
- 5. Various Transporters
- 6. Cell Wall biosynthesis
- 7. Fermentation Pathways
- 8. Transcriptional Regulators

Hypoxia Reduces Transcripts/Proteins For:

- 1. Ribosome Proteins
- 2. Nucleic Acid biosynthesis
- 3. Cell Wall biosynthesis
- 4. Transcriptional Regulators
- 5. Various Transporters

~15% of Genome affected

Hypoxia

A. fumigatus SrbA is required for growth in hypoxia

Willger et al. 2008, *PLoS Pathogens*

The transcription factor SrbA is Required for A. fumigatus Pathogenicity

PBS Mock

Wild-Type

∆srbA

SrbA is Required for Fluconazole and Triazole Drug Responses

Fluconazole

Voriconazole

**Azoles Inhibit Sterol Biosynthesis

Willger et al. 2008, *PLoS Pathogens*

Ergosterol Biosynthesis Related mRNA abundance is regulated by SrbA

Blatzer, Barker et al. PLoS Genetics 2011

SrbA Regulates Iron Uptake Associated Transcripts

**Erg11/Cyp51A and Erg5, SrbA Targets, are HEME Dependent

**Erg25 and Erg3, SrbA Targets, are Fe²⁺ Dependent

Blatzer, Barker et al. PLoS Genetics 2011

What are the direct targets of SrbA in Hypoxia?

Why is this question important?

- (1) Identify Mechanism which could lead to new drug targets
- (2) Better understanding of how A. fumigatus adapts to hypoxia – what is essential?
- (3) Potential to identify genes with novel biological functions.

Approach:

**ChIP-Seq at 4 hours hypoxia – 110 peaks, 97 genes, FDR 0.05

Erg gene transcription regulation by SrbA is DIRECT

Erg11/Cyp51AA Conditional Expression in *∆srbA* background Rescues Fluconazole Resistance

CEA10

∆srbA

pNiiA-Erg11A-∆*srbA*

Blosser, S.J. and Cramer R.A. 2012 Antimicrobial Agents and Chemotherapy

SrbA Cells are Iron depleted and affects triazole drug sensitivity

Fluconazole E-Tests

**The infection microenvironment is complex!

Collaborator: Dr. Hubertus Haas, Innsbruck, Austria

Blatzer, Barker et al. 2011 PLoS Genetics

Transcription Factor Alteration in fungi: an understudied resistance mechanism with *Aspergillus*?

OPEN OR ACCESS Freely available online

Discovery of a *hapE* Mutation That Causes Azole Resistance in *Aspergillus fumigatus* through Whole Genome Sequencing and Sexual Crossing

Simone M. T. Camps^{1,2}*⁹, Bas E. Dutilh³, Maiken C. Arendrup⁴, Antonius J. M. M. Rijs^{1,2}, Eveline Snelders^{1,2}, Martijn A. Huynen³, Paul E. Verweij^{1,2}, Willem J. G. Melchers^{1,2}

Hypoxia increases fungal cell wall material and alters exposure

С

*P < 0.05

Shepardson et al. 2013, Microbes and Infection

Collaboration with Dr. Tobias Hohl, FHCRC

Hypoxia-grown Hyphae have increased Fks1 transcript levels and more soluble Dectin-1 staining

In vivo hypoxia increases Beta Glucan Exposure

Corticosteroid Murine Model of Invasive Pulmonary Aspergillosis

Shepardson et al. 2013 Microbes and Infection

Hypoxic Colonies are more resistant to Caspofungin

Can the infection site microenvironments be manipulated to alter fungal and host metabolism to reduce damage?

HBOT Physiology

- Dissolved oxygen diffuses in RBC impassible areas
- Increases blood flow even in absence of functional Hb
- Increases angiogenesis

Source: http://www.hbot4u.com/hyperbarics.html

<u>Hypothesis</u>: In vivo hypoxia has significant implications for IPA Pathophysiology

•Changes in Host Gene Expression mediated by HIF-1 α •Changes in antifungal efficacy of host effector cells (neutrophils, macrophages) via increased production of antimicrobial products and increased lifespan of cells •Upregulation of Toll-like receptors and increase in proinflammatory cytokine release Changes in Fungal Gene Expression – i.e. *srbA*Alteration of Virulence Attribute levels (cell wall, ergosterol biosynthesis, secondary metabolites)
Alteration in energy requirements for *in vivo* growth: switch to more anaerobic respiratory pathways

•Changes in antifungal drug target Gene Expression: erg11, fksA

•Changes in levels of antifungal drug targets: ergosterol, cell wall components

•Changes in delivery of drug to sites of infection •Enhanced or decreased antifungal activity of the drug in question

Outcome of Infection

Wezensky and Cramer 2010 Med Mycol.

Acknowledgements

• The Cramer Lab:

•Dawoon Chung, Ph.D., Arsa Thammahong, Ph.D. Candidate, Sarah Beattie, Ph.D. Candidate, Sourabh Dhingra, Ph.D.

•<u>Former lab members</u> that contributed to these data: Nora Grahl, Ph.D., Sven Willger, Ph.D., Bridget Barker, Ph.D., Sara Blosser, Ph.D.

Funding:

National Institute of Allergy and Infectious Diseases Leading research to understand, treat, and prevent infectious, immunologic, and allergic diseases.

Geisel School of Medicine, Dept. Microbiology and Immunology

Collaborators on these data:

- J. Craig Ventner Institute
 - Dr. Bill Nierman and Dr. Liliana Losada
- Dartmouth
 - Dr. Chao Cheng and Laboratory
 - Dr. Jay Buckey and Colleagues
- <u>Montana State University</u>
 - Dr. Chuck Carey and Dr. Aurelien Mazurie
- Innsbruck Medical Center
 - Dr. Hubertus Haas
- <u>Sloan Kettering NY</u>
 - Dr. Tobias Hohl
- <u>Duke Univ. Med Center</u>
 - Dr. John Perfect

Dartmouth Lung Biology Center Funded by a CFF RDP and the NIH IDeA Program

2014 Investigator in the Pathogenesis of Infectious Diseases