



### Infection Risk Modeling in Solid Organ Transplantation: The Fungal Problems

#### Shahid Husain, MD, MS

Associate Professor of Medicine

Director, Transplant Infectious Diseases

University Health Network, University of Toronto

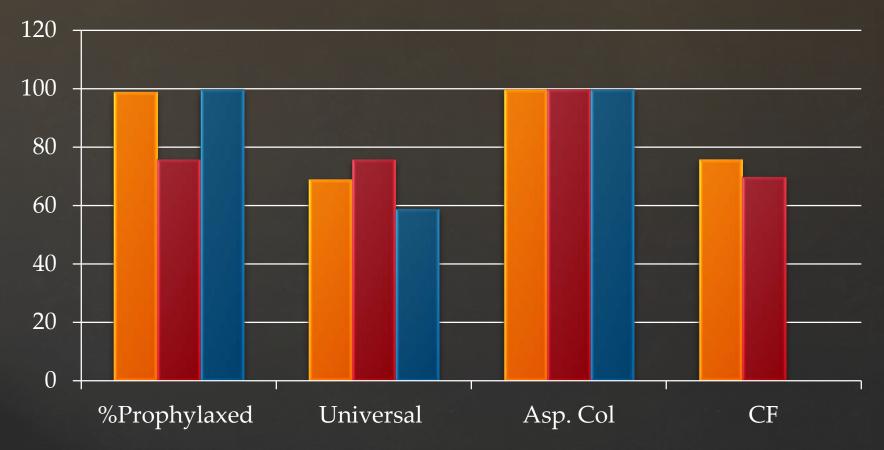
#### You Might Look in the Crystal Ball But We Are Scientists



## Unfortunately Our Model is Not Giselle Rather...



 $y_1 = f_1(x_1, x_2 \ldots, x_n),$  $y_2 = f_2(x_1, x_2; \ldots, x_n),$  $y_i = f_i(x_1, x_2; \ldots, x_n),$  $y_m = f_m(x_1, x_2; \dots, x_n),$ 


## Why We Should Build a Risk Model

#### Antifungal Prophylaxis in Liver Transplants

Survey of all liver transplants in North America
Response rate 63% (67 centers)
Targeted prophylaxis 72% (43 centers)
Universal prophylaxis 28% (16 centers)

#### Antifungal Prophylaxis in Lung Transplant

Husain et al Dummer et al Noeh etal



#### Meta-Analyses of Antifungal Prophylaxis in LTRs

| Outcomes               | Cruciani RR<br>(95%CI) N=698 | Playford EJ RR<br>(95%CI) N=1052 |
|------------------------|------------------------------|----------------------------------|
| Total Fungal Infection | 0.31 (0.21-0.46)             | 0.44 (0.28-0.69)                 |
| Invasive Infection     | 0.33 (0.18-0.59)             | 0.39 (0.18-0.85)                 |
| Superficial Infection  | 0.27 (0.16-0.45)             | 0.25 (0.13-0.51)                 |
| Empiric Treatment      | 0.80 (0.39-1.67)             | 0.95 (0.49-1.83)                 |
| Adverse events         | 1.38 (1.04-1.83)             | 1.2 (0.68-2.12)                  |
| Fungal colonization    | -                            | 0.51 (0.41-0.62)                 |
| Resistant Fungal col.  | -                            | 1.57 (0.76-3.24)                 |
| Mortality              | 1.06 (0.69-1.64)             | 0.84 (0.54-1.30)                 |

Cruciani M et al. Liver Transpl 2006;12:850-8; Playford EG et al. Eur J Clin Microbiol Infect Dis 2006;25:549-61

#### Overall Estimate of IA in Comparative Studies: Comparing Antifungals with No Prophylaxis

|                                             | Antifun    | dal    | Placebo/ No treatm                   | ent   |                                              | Risk Ratio             | Risk Ratio         |
|---------------------------------------------|------------|--------|--------------------------------------|-------|----------------------------------------------|------------------------|--------------------|
| Study or Subgroup                           | Events     | -      |                                      |       | Weight                                       | M-H, Random, 95% CL Ye |                    |
| Reichenspurner 1997                         | 3          | 126    | 12                                   | 101   | 36.9%                                        | 0.20 [0.06, 0.69] 19   | 97 — 🗕 —           |
| Calvo 1999                                  | 0          | 52     | 2                                    | 13    | 21.9%                                        | 0.05 [0.00, 1.04] 19   | 99                 |
| Tofte 2012                                  | 16         | 57     | 14                                   | 82    | 41.2%                                        | 1.64 [0.87, 3.10] 20   | 12 +               |
| Total (95% CI)                              |            | 235    |                                      | 196   | 100.0%                                       | 0.36 [0.05, 2.62]      |                    |
| Total events                                | 19         |        | 28                                   |       |                                              |                        |                    |
| Heterogeneity: Tau <sup>2</sup> = 2         | .41; Chř = | 13.28, | df = 2 (P = 0.001); I <sup>2</sup> : | = 85% |                                              |                        | 0.002 0.1 1 10 500 |
| Test for overall effect Z = 1.02 (P = 0.31) |            |        |                                      |       | Favours Antifungal Favours Placebo/ no treat |                        |                    |

### Consequences

Non-albicans *Candida* species accounted for 55% of IFIs; 50% of these IFIs were Candida parapsilosis & Only 43% of *Candida* isolates were fluconazole-susceptible (minimum inhibitory concentration 8 l/mL) & All C. parapsilosis isolates were fluconazole-resistant,.

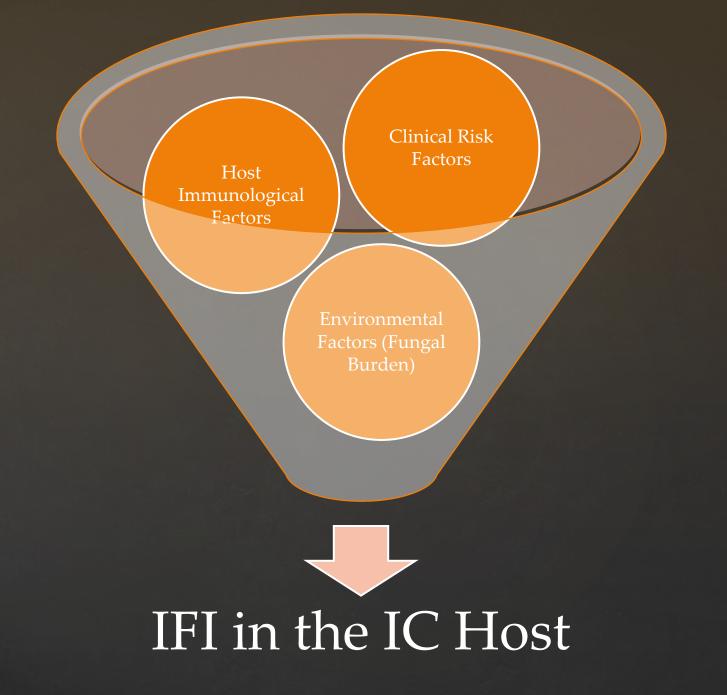
### Voriconazole and Skin Cancer in LTR

| Study                 | Patients with skin cancer | Risk factors                                                            | Hazard<br>ratio    |
|-----------------------|---------------------------|-------------------------------------------------------------------------|--------------------|
| Vadnerkar et al, 2010 | 17                        | Duration of voriconazole therapy<br>Residence in high sun exposure area | 2.1<br>3.8         |
| Singer et al, 2012    | 50                        | Exposure to voriconazole therapy                                        | 2.6                |
| Zwald et al, 2012     | 28                        | Duration of voriconazole therapy<br>Time since Tx<br>Pre-Tx skin cancer | NR                 |
| Feist et al, 2012     | 17                        | Duration of voriconazole therapy<br>Age<br>Pre-Tx skin cancer           | 1.8<br>2.8<br>11.0 |

### Hepatic Enzymopathy

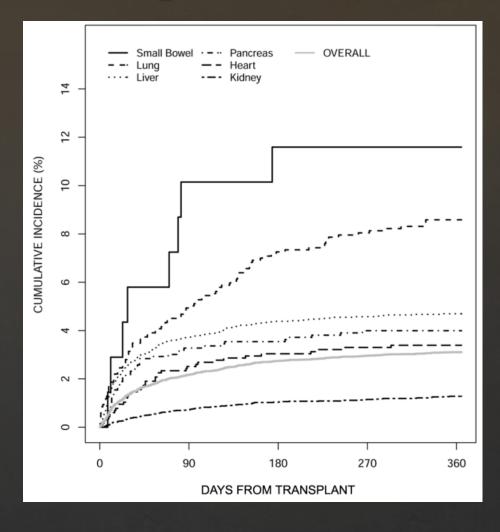
| Author             | Definition                                                                                                                              | Elevated LFTs<br>(%) | Discontinuation<br>(%) |
|--------------------|-----------------------------------------------------------------------------------------------------------------------------------------|----------------------|------------------------|
| Husain et al, 2006 | >3x increase AST,<br>ALT, ALK and Bili<br>on<br>voriconazole                                                                            | 37                   | 14                     |
| Cadena et al, 2009 | >3x increase AST,<br>ALK<br>>1.5x increase Bili in<br>the absence of<br>other etiologies and<br>improvement with<br>d/c of voriconazole | 34                   | 34                     |
| Luong et al, 2012  | >3x increase AST,<br>ALT, ALK and Bili<br>or<br>voriconazole                                                                            | 51                   | 34                     |

### The Best Utility of Fungal Infection Model would be


#### **Targeted antifungal prophylaxis**:

Refers to an antifungal medication started in the postoperative period, prior to any post-transplant isolation of a fungal pathogen, which is prescribed only to patients deemed higher risk for IFI.

#### **Pre-emptive antifungal therapy**:


Refers to an antifungal medication started after a posttransplant isolation of a fungal pathogen or diagnostic marker in the absence of any evidence for invasive fungal infection.

### What Should Be Used in Modelling The Risk of Fungal Infections in SOT



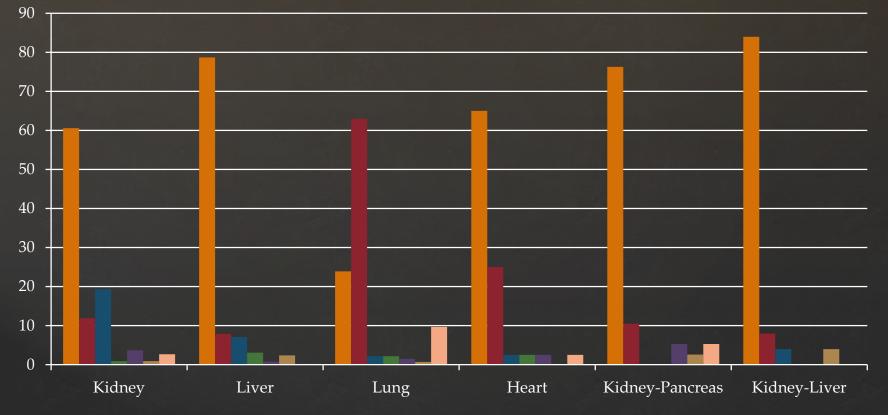
The Clinical Risk of Fungal Infection

#### Type of Transplant



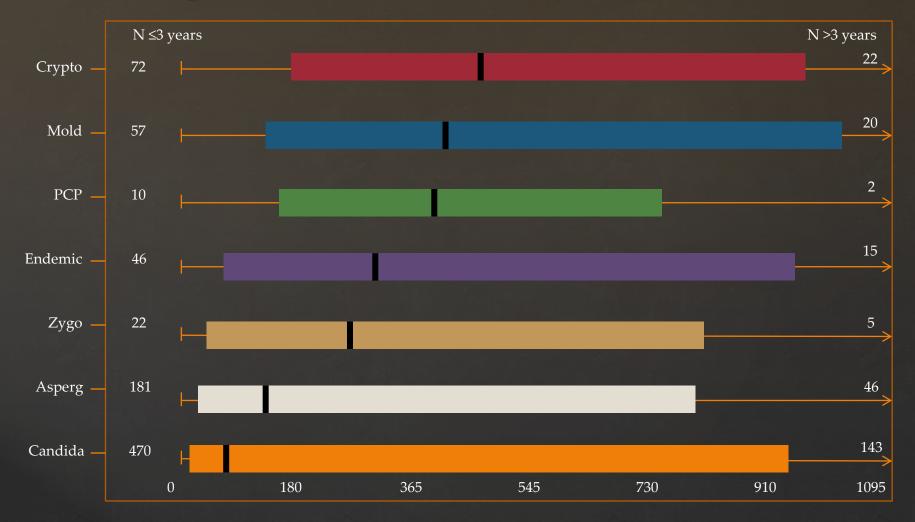
Pappas P. Clin Infect Dis 2010;50(8):1101-11






Aspergillus spp.

*Cryptococcus spp.* Zygomycetes


Endemic Fungi Other Yeasts

Other Moulds



Neofytos D. Transplant Infect Dis 2010;12(3):220-229

#### Timing of IFI



Pappas P. Clin Infect Dis 2010;50

#### Lower Risk (< 4%) with Only One Risk Factor

- & Choledochojejunostomy anastomosis
- & Re-transplantation

- Return to the operating room within 5 d of OLT for laparotomy
- ℵ Primary graft non-function

#### Newly Established Risk Factors in Liver Transplantation

& MELD score >25
& Preceding bacterial infection
& Prolonged ICU stay
& Fulminant hepatic failure

Lichtenstern C. Mycoses 2013;56:350–357 Raghuram et al. Liver Transpl 2012 Saliba F. Clin Transplant 2013;27:E454–61

#### Unique Factors Contributing to the Risk of Infection in LT

Continuous contact with pathogens

Higher state of immunosuppression

Airways colonization

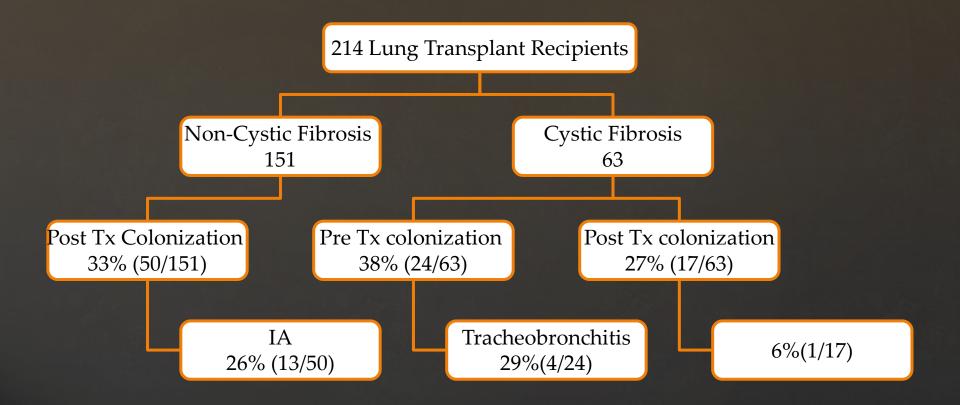
Pulmonary stent

The native lung

Hypogammaglobulinemia

**CARV** Infection




Denervation

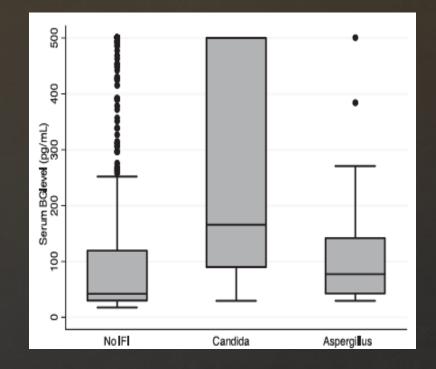
Impaired cough reflex

Decrease mucociliary clearance

Ischemic reperfusion injury

#### Colonization




Helmi M. Chest 2003 Mar;123(3):800-8; Nunley. Chest 1998 Nov;114(5):1321-9



Diagnostic Biomarkers

# Role of Serum (1 $\rightarrow$ 3) $\beta$ -D-Glucan to Diagnose IFI?

- 1 study in LTRs assessed the utility of serial serum BDG monitoring for diagnosis of IFI (including IA and IC)
- k Fungitell test, cut-off 60 pg/mL
  - Sensitivity 71%
  - Specificity 59%
  - Test positive in 4/7 IA cases
- Serum BDG test has marginal accuracy for the diagnosis of IFI in LTRs



## Role of Serum GM to Diagnose IA in SOT Recipients?

|                                        | Organ      | Incidence | Cut-off | Sensitivity | Specificity |
|----------------------------------------|------------|-----------|---------|-------------|-------------|
| Fortun et al.<br>Transplantation, 2009 | Liver, 240 | 5.8       | OD >0.5 | 55.6        | 93.9        |
| Husain et al. AJT,<br>2004             | Lung, 70   | 17.1      | OD >0.5 | 30          | 93          |
| Kwak et al. JCM,<br>2004               | Liver, 154 | 0.6       | OD >0.5 | N/A         | 87          |

## Role of BAL GM in Diagnosing IA in CTT Recipients?

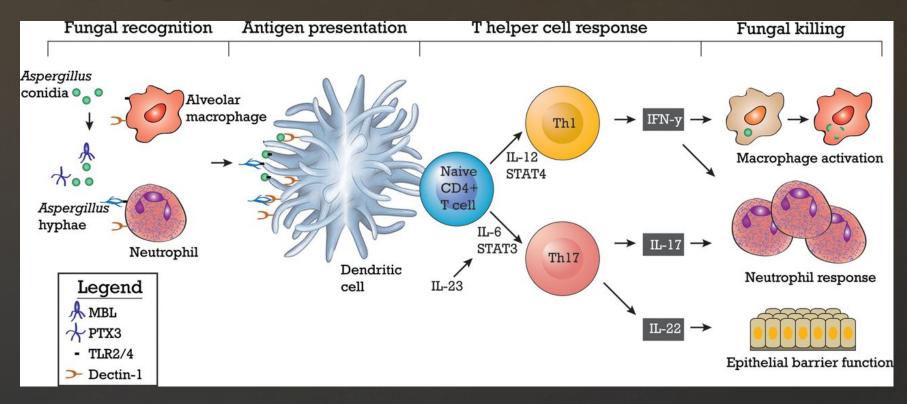
BAL GM was shown to be useful for diagnosis of IA

- More sensitive than serum GM
- 3 meta-analyses evaluated the utility of BAL GM for diagnosing IA
  - Sensitivity of BAL GM 82-86% (using cut-off >0.5)
  - Specificity of BAL GM 89-92% (using cut-off >0.5)

|                            | Guo. Chest. 2010 | Zou. PlosOne. 2012 | Heng. Clin Rev<br>Micro. 2013 |
|----------------------------|------------------|--------------------|-------------------------------|
| Number of studies          | 13               | 30                 | 16                            |
| Pooled Sensitivity GM >0.5 | 86 (70-94)       | 87 (79-92)         | 82 (70-91)                    |
| Pooled Sensitivity GM >1.0 | 85 (72-93)       | 96 (76-92)         | 75 (55-88)                    |
| Pooled Sensitivity GM >1.5 | 70 (49-85)       | 85 (71-96)         | 92 (48-99)                    |
| Pooled Specificity GM >0.5 | 89 (85-92)       | 89 (85-92)         | 92 (85-96)                    |
| Pooled Specificity GM >1.0 | 94 (89-97)       | 95 (91-97)         | 95 (87-98)                    |
| Pooled Specificity GM >1.5 | 96 (93-98)       | 95 (90-97)         | 98 (78-100)                   |

Guo et al. Chest.2010;138(4):817-24; Zou et al. PlosOne. 7(8):e43347; Heng et al. Clin Rev Microbiol 2013; Epub

# Role of BAL *Aspergillus* PCR in Diagnosing IA?


- Sensitivity 100%; superior to BAL GM (100% vs. 93%)
- Among LTRs with colonization, BAL GM was more specific than BAL PCR (92% vs. 50%)

k No data on the performance of MycAssay in CT recipients

| Test         | Sensitivity  | Specificity PPV |            | NPV          |
|--------------|--------------|-----------------|------------|--------------|
| BAL PCR      | 100 (79-100) | 88 (79-92)      | 50 (30-65) | 100 (97-100) |
| BAL GM > 0.5 | 93 (68-100)  | 89 (82-93)      | 48 (29-97) | 99 (95-100)  |
| BAL GM > 1.0 | 67 (38-88)   | 97 (92-99)      | 71 (42-92) | 96 (92-99)   |

Biomarkers in Invasive Fungal Infections

#### Protective Immunity Against Aspergillus



Camargo JF and Husain S. Clin Infect Dis 2014;59:569-577

#### Selected Genetic Polymorphisms Associated with IA

|         |                            | SI         | NP           |                   |                                |
|---------|----------------------------|------------|--------------|-------------------|--------------------------------|
|         | Patient                    |            | Nucleotide   | Risk of IA        |                                |
| Gene    | population                 | Position   | substitution | OR (95%CI)        | Ref                            |
| MBL2    | HSCT                       | -          | -            | 7.3 (1.9-27.3)    | Granell M, Exp<br>Hematol 2006 |
| TLR4    | HSCT                       | -2604      | A/G          | 3.22 (1.02–10.16) | Bochud P, NEJM 2008            |
|         |                            | +1363      | C/T          | 4.96 (1.52–16.24) |                                |
|         |                            | +1063      | A/G          | 6.16 (1.97–19.26) |                                |
|         |                            | +1363      | C/T          |                   |                                |
| CLEC7A  | Hematological malignancies | c.714      | A/C          | 3.89 (1.51–9.99)  | Cunha C, Blood 2010            |
|         |                            | c.255+813  | G/T          | 5.59 (1.37-22.77) | Sainz J, Plos One 2012         |
|         |                            | c.375-1404 | C/G          | 4.91 (1.52–15.89) |                                |
| PTX3    | HSCT                       | +281       | A/G          | 2.92 (1.69-5.05)  | Cunha C, NEJM, 2014            |
|         |                            | +734       | A/C          | 2.62 (1.52-4.54)  |                                |
|         |                            | +281G      | A/G          | 3.08 (1.47-6.44)  |                                |
|         |                            | +734A      | A/C          |                   |                                |
| DC-SIGN | Hematological malignancies | c.2797     | A/G          | 2.75 (1.27–5.95)  | Sainz J, Plos One 2012         |

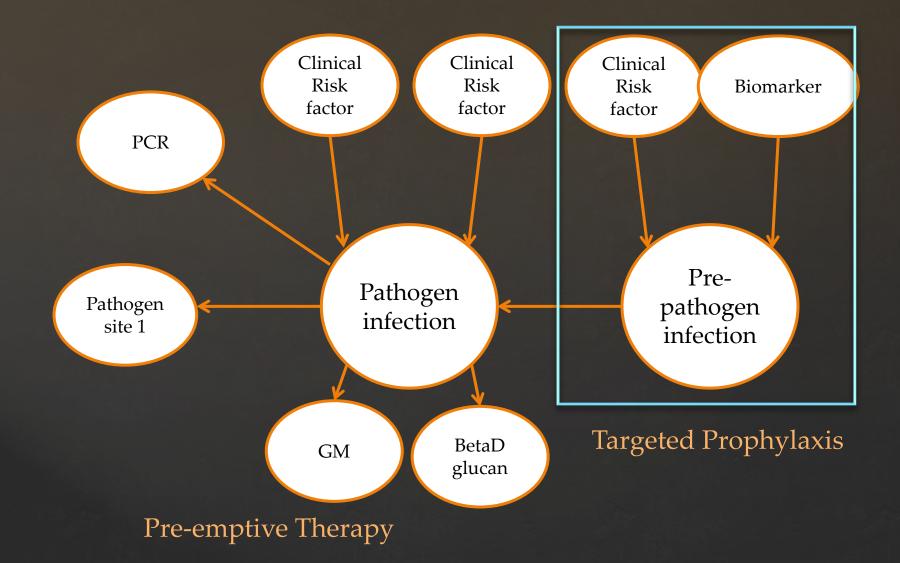
Camargo JF and Husain S. Clin Infect Dis 2014;59:569-577

#### Common Genetic Variants Candidiasis I

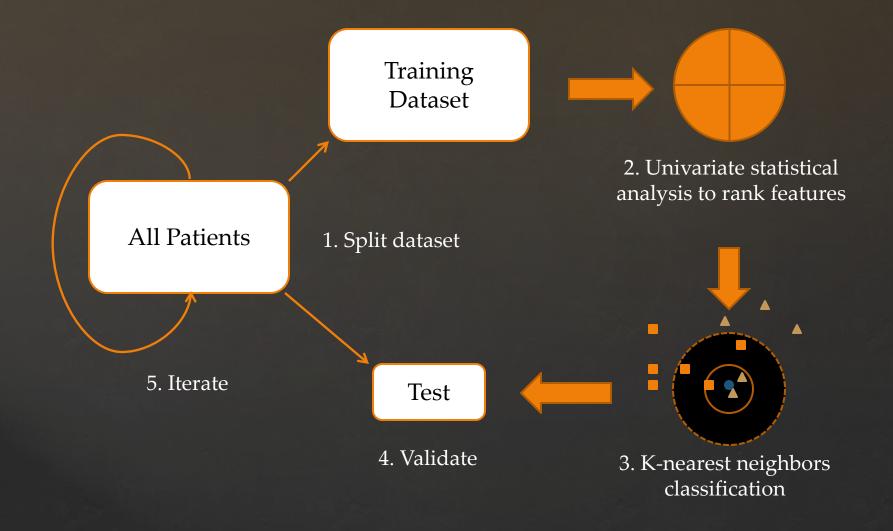
| Gene     | SNP (rs-number)                                                                            | Phenotype                                                       | Disease                                     |
|----------|--------------------------------------------------------------------------------------------|-----------------------------------------------------------------|---------------------------------------------|
| Dectin-1 | Y238X (rs16910526)                                                                         | Decreased IL-1 $\beta$ and Th17 responses                       | Candida colonization                        |
| DEFB1    | -44C/G (rs1800972)                                                                         | Unknown                                                         | Candida carriage                            |
| IL-4     | -589T/C (rs2243250)<br>-1098T/G (rs2243248),<br>-589C/T (rs2243250),<br>-33C/T (rs2070874) | Increased vaginal IL-4, reduced NO<br>and MBL levels<br>Unknown | RVVC<br>Chronic disseminated<br>candidiasis |
| IL-10    | -1082A/G (rs1800896)                                                                       | Higher <i>Candida</i> -induced IL-10 production                 | Persisting candidemia                       |
| IL-12B   | 2724INS/DEL<br>(rs17860508)                                                                | Lower <i>Candida</i> -induced IFN-γ production                  | Persisting candidemia                       |
| MBL2     | Variable number of<br>tandem repeats in<br>intron 4                                        | Reduced vaginal MBL levels                                      | RVVC                                        |
| NLPR3    | Length<br>polymorphism                                                                     | Impaired IL-1β production                                       | RVVC                                        |

Smeekens SP. EMBO Mol Med 2013;5:805-13

#### Common Genetic Variants Candidiasis II


| Gene   | SNP (rs-number)                                              | Phenotype                                                                   | Disease                                |
|--------|--------------------------------------------------------------|-----------------------------------------------------------------------------|----------------------------------------|
| PTPN22 | R620W (rs2476601)                                            | Unknown                                                                     | Increased risk for CMC                 |
| TLR1   | R80T (rs5743611),<br>S248N (rs4833095),<br>I6025 (rs5743618) | Decreased production of IL-1β, IL-6<br>and IL-8 after TLR1-TLR2 stimulation | Increased susceptibility to candidemia |
| TLR2   | R753Q (rs5743708)                                            | Decreased levels if IFN- $\gamma$ and IL-8                                  | Increased susceptibility to candidemia |
| TLR3   | L412F (rs3775291)                                            | Decreased IFN-γ levels                                                      | Increased risk for CMC                 |
| TLR4   | D299G (rs4986790),<br>Y399I (rs4986791)                      | Increased IL-10 production                                                  | Increased susceptibility to candidemia |

#### Smeekens SP. EMBO Mol Med 2013;5:805-13


#### Effect of Commonly Used Immunosuppressives and Antifungal Drugs on Biomarkers

|                   | РТХ3         | Dectin-1     | DC-<br>SIGN  | TLR2         | TLR4         | NFAT         | IL-17        |
|-------------------|--------------|--------------|--------------|--------------|--------------|--------------|--------------|
| Steroids          | $\downarrow$ | $\downarrow$ | $\downarrow$ |              |              |              | $\downarrow$ |
| Tacrolimus        |              | $\downarrow$ |              |              | $\downarrow$ | $\downarrow$ | $\downarrow$ |
| Cyclosporin       |              | $\downarrow$ |              | $\downarrow$ | $\downarrow$ | $\downarrow$ | $\downarrow$ |
| Mycophenolic acid |              |              |              |              |              |              | $\downarrow$ |
| Rapamycin         |              | $\downarrow$ |              | $\downarrow$ | $\downarrow$ | $\downarrow$ |              |
| D-AmB             |              |              |              | $\uparrow$   |              |              |              |
| L-AmB             |              |              |              |              | 1            |              |              |
| Voriconazole      |              |              |              | 1            |              |              |              |
| Echinocandins     |              | 1            |              |              |              |              | ?↑           |

#### Bayesian Model for Infection Risk Modelling in Future



#### K-Nearest Neighbor Algorithm



#### Conclusions

- & Current clinical risk stratification of IFI in SOTRs are based on older studies and continues to evolve. Further delineation of clinical risk factors in current era is required
- & There is a emerging data on the diagnostic markers (β-D-Glucan , GM and PCR) of IFI in SOT. They can be employed in pre-emptive setting
- Immunological markers for IFIs are not well studied in SOT their role in targeted prophylaxis remains to be defined
- Decision making models for SOT from large cohort studies need to incorporate diagnostic and immunological markers for IFIs

#### Transplant Infectious Disease Team

