Fungal Biomarkers in Transplantation: Distinguishing Colonization from Infection

Kimberly Hanson, MD, MHS Associate Professor of Medicine and Pathology Director, Transplant Infectious Diseases Section Head, Clinical Mycology Laboratory University of Utah and ARUP Laboratories

Overview

- Differentiating colonization from invasive disease is essential for guiding the optimal use of available antifungal agents.
- Potential diagnostic strategies
 - Pathogen derived biomarkers
 - Cell wall components and nucleic acid
 - Measures of host response to infection
 - Antibodies, inflammatory markers, gene expression profiles
- Post-transplant scenarios:
 - Airway colonization vs. invasive pulmonary aspergillosis (IPA)
 - Skin/mucosal colonization vs. invasive candidiasis (IC)

Invasive Fungal Infections (IFI)

- Microbiologic factors
 - Fungal burden and organism virulence
- Host factors
 - Immunity, mucosal barriers, relative hypoxia/ischemia in grafted organ

Images adapted from www.aspergillus.org.uk/indexhome.htm?education/slides.htm~main

Invasive Pulmonary Aspergillosis (IPA) and Lung Transplantation

- Airway colonization is common and often transient
 - Airborne conidia (2.5–3.5 μm diameter) readily enter the lung alveoli
 - Aspergillus isolated from 45% of lung transplant recipients¹
 - Invasive disease relatively rare (5-16%)²⁻³

Defining Fungal Colonization

Ē

	Signs/Symptoms	Radiology	Microbiology	Path	
	 No fever OR hypothermia No change in secretions No new symptoms or exam findings Normal mucosa OR absence of endobronchial lesions 	 No new or progressive abnormality 	 Single (+) BAL culture OR Single (+) BAL PCR OR (+) BAL galactomannan OR ≥ TWO (+) sputum cultures/PCRs 	 No histologic evidence of invasive disease 	
	ISHLT Definitions. J Heart Lung Transplant. 2013;32:157-187				
Patients may have other concomitant infections IFIs have multiple CT appearances after lung transplantation Biopsy may not be possible and is subject to sampling error					

Galactomannan (GM)

- \diamond Sandwich enzyme-linked immunosorbent assay
 - Antibody binds β-(1-5)-galactofuranosyl (galf) side chains
 - Result is an optical density (OD) index (≥0.5)
 - Cross-reactivity with *Penicillium* and *Paecilomyces*

Serum

- 70 Lung transplants¹
 - Detected 29% (2/8) IPA
 - Detected 0% (0/4) tracheobronchitis
- Meta-analysis² (SOT subgroup)
 - Sensitivity 22% (95% CI; 3-60%)
 - Specificity 84% (95% CI; 78-88%)
 - Better sensitivity in Heme/BMT

BAL

- Lung transplant (OD≥0.5) ³⁻⁵
 - Sensitivity (range 60-100%)

TMB

Substrate

HΡ

GM

Specimen well

Colored

Product

- Specificity (range 40-95%)
- Colonization causes positives
 - OD index higher in IPA
 - A cut-off may increase specificity

Am J Transplant 2004; 4: 796-802; 2) CID 2006; 41:1417-27;
 Transplantation 2007; 83: 1330-1336; 4) Transplantation 2010; 90: 306-311;
 CID 2011; 52:1218-1226

1,3-β-D-Glucan (BDG)

- ♦Limulus amebocyte lysate assay
 - Pan-fungal marker
 - Activation of horseshoe crab coagulation factor G
 - ■Spectrophotometric readout reported in pg/ml (≥80)

Serum

- 73 Lung transplants¹
 - 14 IFIs and 59 no IFI
 - >> Sensitivity 64%
 - >> Specificity 9%
 - Mold colonization associated with false positive BDGs

BAL

- Few studies²⁻³
 - Sensitivity for IPA similar to GM
 - Poor specificity
 - No mention of colonization
 - >> presumably yeast
 - Poor reproducibility

Based on limited data – BDG not recommended for lung transplant recipients or BAL

1) J Clin Microbiol 48:4083-4088; 2) J Infection 2014; 69: 278-283; 3) Mycopathologica 2013; 175: 33-41

Nucleic Acid Amplification Tests

- \diamond Quantitative detection of *Aspergillus* DNA or RNA
 - Genus or species-specific designs (ribosomal targets), varying cross-reactivity
 - Potential for contamination from the environment and reagents

Real-time 18S rDNA PCR

- 137 Lung transplant recipients¹
 - BAL from 16 IPA, 26 colonized
 >> Sensitivity 100% (95% CI; 79-100%)
 >> Specificity 84% (95% CI; 78-88%)
 - 80% (13/16) false positive tests due to colonization
 - Lower Cq with IPA vs. colonization
 - Cross-reactivity with *Penicillium*

Real-time 28S rRNA NASBA

- Immunocomp rat IPA model²
 - BAL
 - Analytically sensitive < 1CFU/assay
 - Robust linear range x 5 log units
 - No theoretic benefit over rDNA for colonization discrimination

1) CID 2011; 52:1218-1226; 2) J Clin Microbiol 2010; 48: 1378-1383;

The Aspergillus fumigatus Volatome

- Volatile organic compounds (VOCs)
 - Secondary metabolites of fungi
 - Profile can be organism and nutrient specific¹
 - Terpene and sesquiterpenes
 - Exhaled breath condensate
 - Gas chromatography-mass spectrometry (GC-MS)
 - VOC pattern discriminated IA from non-IA patients (51/54, 94%)²
 - » Included 25 patients with nodular pneumonia cause by other pathogens
 - 2-pentylfuran found in CF lung disease and bronchiectasis³
 - Further studies required to establish clinical utility and assess confounding effects
 - Food, drugs, the environment, upper airway colonization

Measures of Host Response to IPA

- Acute phase reactants and innate immunity in BAL
 - Long Pentaxrin 3 (PTX3)
 - Secreted pattern-recognition receptor
 - 172 BALs from 76 lung recipients and 9 healthy controls²
 - » 3 IA, 20 colonization, 79 other organisms, 61 culture negative
 - » PTX levels measured by ELISA were highest in IPA
 - No overlap in levels between groups
 - \clubsuit Haptoglobin, \clubsuit C-reactive protein and \clubsuit annexin 1²
 - BAL from immunocompromised rabbits with and without IPA
 - » Host derived proteins predominantly found in IPA vs. uninfected controls
 - » Significant change in response to therapy
 - » Annexin potentially degraded by *A. fumigatus* proteases
 - 1. IDSA 2013 Abstract # 1429
 - 2. AAC 2014; 58: 3373-3378

The Spectrum of Candida Infection

• Part of the normal flora

- Colonization is common
 - 60 80% ICU patients colonized at multiple sites¹

Invasive candidiasis (IC)

- Includes blood stream and deepseated infections
 - Typical ICU pre-test probability 3%²
 - Clinical signs and symptoms non-specific

1.) Crit Care Med 2009; 37(5):1624-33 2.) Eur J Clin Microbiol Infect Dis 2007; 26: 271-6; 3) Diagn Microbiol Infect Dis 1993; 17: 103-109

1,3,-β-D Glucan (BDG)

- Meta-analysis (IC subgroup)¹
 - Sensitivity 81% (95% CI; 77-85%)
 - Specificity 83% (95% CI; 80-83%)
 - No colonization analysis
- ICU studies²⁻³
 - No association of false (+) tests
 with colonization
 - When IC prevalence 3-10%
 - NPV may be the most useful

- False-positives:
 - Blood products
 - Gauze packing
 - Amoxicillin-clav acid
 - Hemodialysis
 - Bacteremia
 - Mucositis
 - Specimen manipulation
- 2 sequential tests

1.) J Clin Microbiol 2012; 50: 7-15; 3. CID 2013; 56: 1284-922. 2.) Crit Care. 2014 Jun 29;18(3):R135; 3.) PLoS One. 2012;7(8):e42282

Candida antigens, antibodies and metabolites

- Mannan immunogenic cell wall polysaccharide
 - Test characteristics improved when serum antibody/antigen assays used in combination¹

>> Sensitivity 83% (95% Cl, 79-87)

>> Specificity 86% (95% Cl, 82-90)

Colonization

- May cause detectable mannan antibodies²
- No statistical effect on mannan antigen³⁻⁴
- D-arabinitol *Candida* spp. metabolite
 - GC-MS of urine D-arabinitol/L-arabinitol ratio⁵
 - 17 neutropenic patients IC, 22 colonized, 22 uninfected
 >> Sensitivity 88%, Specificity 91%
 >> Differentiated most colonization (including bladder) from
 disseminated IC

1.) Crit Care. 2010;14(6):R222; 2.) Expert review Mol Diagn 2008; 8:315-325; 3.) J Clin Microbiol 2013; 51: 1158-1164; 4.) BMC Infect Dis 2010; 10: 292-297; 5.) J Clin Microbiol 1996; 34: 2175-3179

Candida PCR direct from Blood

- Rabbit models of disseminated candidasis¹⁻²
 - DNA detectable in blood
- Patients with deep-seated disease and (-) blood culture
 PCR sensitivity 88%³
- Meta-analysis laboratory developed tests (proven/prob IC)³
 - Sensitivity 95% (95% CI; 88-98%)
 - Specificity 92% (95% CI; 88-95%)
 - Few studies addressed colonization
 >> Trend toward ♥ specificity
 >> Imperfect diagnostic standard
 - Heterogeneity

1.) J Clin Microbiol 1999; 37:925-30; 2.) J Clin Microbiol 2006; 44: 143-50; 3.) CID 2012; 54: 1240-8; 4.) J Clin Microbio 2011; 49: 665-70;

Host Gene Expression Analysis

- Mouse model of IC¹
 - Transcription profile
 - Whole blood microarray
 - Immune effector gene signatures
 - Patterns differentiated *Candida* vs. *S. aureus* vs. uninfected controls
 > Sensitivity 98%
 > Specificity 96%

1.) Sci Transl Med 2010; 2: 1-10

Pattern Recognition Receptors

Modified from Cell Host & Microbe, 2009; 6: 199

Conclusions

- Apsergillosis
 - GM and qPCR do not differentiate airway colonization from invasive disease
- Candidiasis
 - BDG not consistently affected by colonization in ICU, trend toward lower specificity with blood PCR
- Future directions
 - Evaluation of biomarker combinations
 - Need to assess assay performance in specific populations and the impact of colonization
 - Continued standardization of pathogen-specific NAAT
 - Develop diagnostics to target pathogen or host gene expression
 - VOC breath testing, host immune response in blood and BAL warrant further human study

Thanks and Questions?

