

Aspergillus Speciation in the 21st Century -

Implications for Laboratory and Clinical Practice

Recommendations for routine daily practice

WORKSHOP. 6TH AAA. Madrid

Manuel Cuenca-Estrella

Conflict of interest disclosure

- In the past 5 years, M.C.E. has received grant support from Astellas Pharma, bioMerieux, Gilead Sciences, Merck Sharp and Dohme, Pfizer, Schering Plough, Soria Melguizo SA, Ferrer International
- He has been an advisor/consultant to the Panamerican Health Organization, Astellas Pharma, Gilead Sciences, Merck Sharp and Dohme, Pfizer, and Schering Plough.
- He has been paid for talks on behalf of Gilead Sciences, Merck Sharp and Dohme, Pfizer, Astellas Pharma and Schering Plough.

Aspergillus spp.

Aspergillus spp. are the most frequent moulds in the environment

They play a significant role in decay of organic matter

1-100 conidia/m³ of air

We inhale several hundreds a day

Aspergillus fumigatus

Epidemiology of moulds

	Hem	SOT		
	Neofytos CID'09	Pagano CID'07	Marr CID'02	Husain CID'03
Aspergillus	80%	94.5%	77.3%	69.8%
Zygomycetes	9.7%	1.1%	8.6%	5.6%
Fusarium	2.2%	3.2%	9.2%	3.7%
Scedosporium		1.1%	2.9%	5.6%
Other	9.2%		1.78%	15%

Prospective Surveillance for Invasive Fungal Infections in Hematopoietic Stem Cell Transplant Recipients, 2001–2006: Overview of the Transplant-Associated Infection Surveillance Network (TRANSNET)

Database Clinical Infectious Diseases 2010;50:000-000

Invasive Fungal Infections among Organ Transplant Recipients: Results of the Transplant-Associated Infection Surveillance Network (TRANSNET)

Clinical Infectious Diseases 2010;50:000-000

	Haematological	SOT
A. fumigatus	44%	60%
A. terreus	5%	4%
A. niger	9%	6%
A. flavus	7%	7%
Unspecified Aspergillus	26%	7%
Zygomycetes	8%	2%
Fusarium	3%	
Unspecified moulds	6%	2%

Results from Spain. FILPOP. Population-based survey. 325 isolates

<i>Aspergillus</i> spp. (<i>sensu stricto</i>)	Ν	%
TOTAL	277	85% (4 cases per 100,000 pop)
A. fumigatus	156	48%
A. flavus	26	8%
A. terreus	26	8%
A. tubingensis (section Nigri)	22	6.8%
A. niger	21	6.5%
A. nidulans	8	2.5%

Aspergillus cryptic species

Table 1. Aspergillus specie	11% cryptic species	idemiologi	cal surveys from	Spain and the U. S. ²²		15% cryptic species
		Transr	iet	FILPOP		
Species	Section	N isolates	%	N isolates	%	
A. fumigatus	Fumigati	139	63.8	156	56.1	
A. lentulus	Fumigati	4	1.8	3	1.1	
A. udagawae	Fumigati	3	1.4	0	0.0	
N. peudofischeri	Fumigati	1	0.5	1	0.4	
A. viridinutans	Fumigati	0	0.0	1	0.4	
A. fumigatiafinis	Fumigati	0	0.0	1	0.4	
A. flavus	Flavi	29	13.3	27	9.7	
A. alliaceus	Flavi	0	0.0	3	1.1	
A. terreus	Terrei	11	5.0	26	9.4	
A. carneus	Terrei	0	0.0	1	0.4	
A. tubingensis	Nigri	6	2.8	22	7.9	
A. niger	Nigri	13	6.0	21	7.6	
A. calidoustus	Usti	6	2.8	4	1.4	
A. insuetus	Usti	0	0.0	1	0.4	
A. keveii	Usti	0	0.0	1	0.4	
A. sydowii	Versicolores	2	0.9	1	0.4	
A. versicolor	Versicolores	3	1.4	0	0.0	
E. quadrilineata	Nidulantes	1	0.5	0	0.0	
A. nidulans	Nidulantes	0	0.0	8	2.9	
A. westerdijkiae	Circumdati	0	0.0	1	0.4	
Total		218	100	278	100	

AMB ICZ VCZ PCZ CPF MCF ANF n Ŗ R * *** 0.23 A. lentulus 1.6 0.1 0.1 26 4 64 N. hiratsukae 9 1.7 0.9 1.1 0.16 0.11 0.03 0.03 N. pseudofischerii 0.25 0.22 0.86 0.03 6 0.03 ad (a) <u>R</u> 0.22 6 0,03 0,03 A. fumigatiaffiinis 4 To 4 L 0.25 2 N. udagawae 5 0.6 0.3 0.03 0.03 $(\mathbf{3})$ * ** ** # 0,7 0,25 5,66 A. viridinutans 0,06 0,09 ad 63 ad 63 A. tubingensis 22 0.11 0.42 0.09 0.3 0.05 0.03 0.76 0.9 A. calidoustus 19 0.5 0.04 0.04 2 0.7 A. insuetus 5.6 1.4 0.9 - ta ad (a) ** # (1)0,25 ** ¥ 16 16 16 A. keveii 40 60 ad 63 مه اسه A. alliaceus 30 0.2 0.5 0.11 12.15 3.8 1.9

By Alastruey-Izquierdo

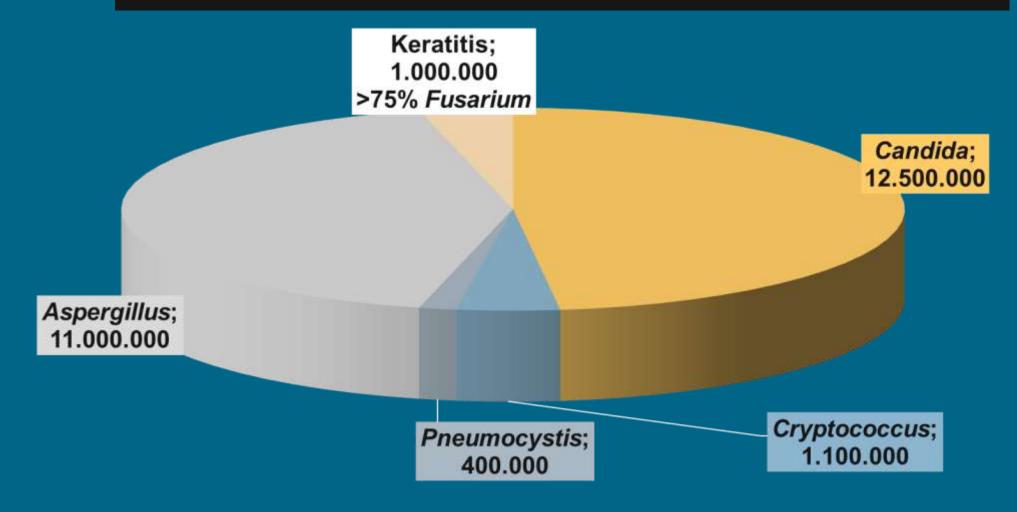
The management of febrile neutropenia in the posaconazole era: a new challenge?

Livio Pagano,¹ Morena Caira¹ and Manuel Cuenca-Estrella²

'Istituto di Ematologia, Università Cattolica del S.Cuore, Rome, Italy; ²Servicio de Micología, Centro Nacional de Microbiolo Salud Carlos III, Majadahonda, Madrid, Spain

E-mail: lpagano@rm.unicatt.it doi:10.3324/haematol.2012.062166

Table 1. Incidence of proven/probable invasive fungal diseases in acute myeloid leukemia after posaconazole prophylaxis: data from different types of study.

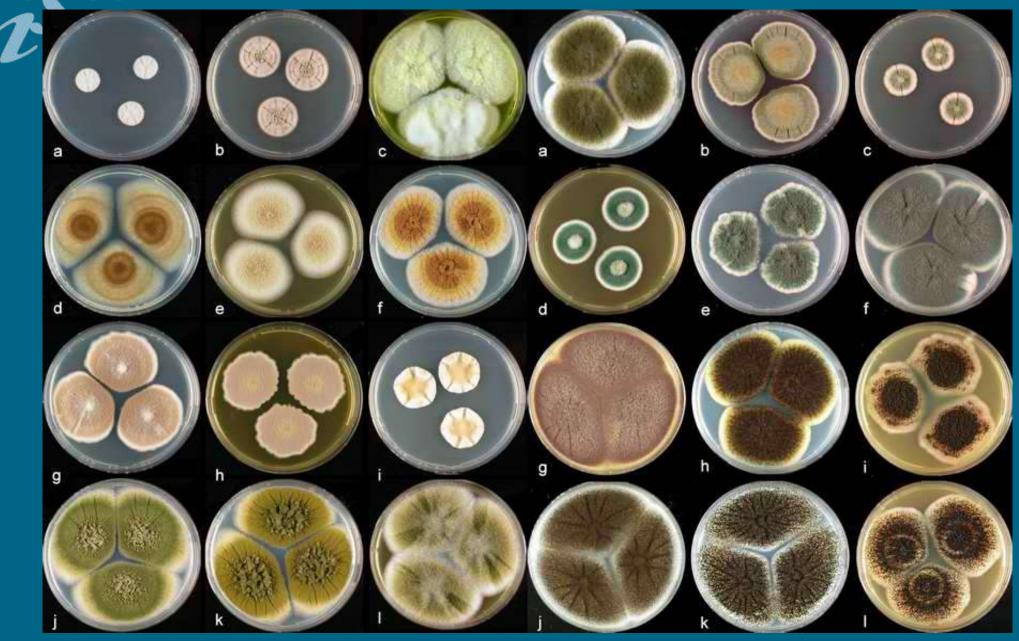

References	Years	Type of study	N. pts	N. proven/ probable breakthrough IFDs	Incidence %
RCT					
Cornelly <i>et al.</i> ,*	2002-05	RCT	304	7	2%
"Real life" studies					
Michallet <i>et al.</i> ¹⁹	2007-08	Pros	55	2	3.6%
Candoni <i>et al.</i> ™	2009-10	Retro	55	2	4%
Lerolle <i>et al.</i> ¹⁸	2007-10	Retro	209	8	3.8%
Egerer <i>et al.</i> ¹⁶	2007-09	Retro	76*	1	1.3%
Vehreschild <i>et al.</i> ²⁰	2006-08	Retro	77	3	3.9%
Hahn et al. "	2007-08	Retro	21	1	5%
Busca <i>et al.</i> ¹⁴	2009-10	Retro	61	0	0
Ananda-Rajah et al.	³ 2006-10	Retro	68	0	0

RCT: randomized clinical trial; Retro: retrospective study; Pros: prospective study; IFDs: invasive fungal diseases. * number of chemotherapy courses.

Relevant Mycoses. Annual incidence

According to LIFE and GAFFI (www.life-worldwide.org)

Aspergillus spp.


Aspergillus spp. are (at least) 175 species, 18 complexes or sections (*perpetual motion*)

10-15 sexual forms identified

Aspergillus spp.

....

Klich MA. Identification of common *Aspergillus* species (2002). CBS.

Unusual or atypical isolates

Poorly sporulating *A. fumigatus* *Neosartorya fischeri* with masses of cleistothecia

Reasons for molecular identification in Medical Mycology

- Morphology is not enough
- Changing landscape of epidemiology (sibling and cryptic species)
- Species-specific differences in antifungal susceptibilities
- Quick lab answer (automated); better patient's outcome?

Consensus Molecular Taxonomy

JOURNAL OF CLINICAL MICROBICLOGY, Apr. 2009, p. 877-884 0095-1137/09/\$08.00+0 doi:10.1128/JCM.01685-08 Copyright © 2009, American Society for Microbiology. All Rights Reserved. Vol. 47, No. 4

GUEST COMMENTARY

Sequence-Based Identification of Aspergillus, Fusarium, and Mucorales Species in the Clinical Mycology Laboratory: Where Are We and Where Should We Go from Here?[♥]

S. A. Balajee,¹* A. M. Borman,² M. E. Brandt,¹ J. Cano,³ M. Cuenca-Estrella,⁴ E. Dannaoui,⁵ J. Guarro,³ G. Haase,⁶ C. C. Kibbler,⁷ W. Meyer,⁸ K. O'Donnell,⁹ C. A. Petti,¹⁰ J. L. Rodriguez-Tudela,⁴ D. Sutton,¹¹ A. Velegraki,¹² and B. L. Wickes¹³

Molecular id by means of sequencing βtubuline of *A. fumigatus* species complex

Data obtained from Mycology Reference Laboratory. Spain

Culture of clinical samples

Population	Intention	Intervention	SoR	QoE	Reference	Comment
Any	Primary isolation from deep sites (biopsies, blood, CSF)	Culture on SDA, BHI agar, PDA or PFA at 30°C and 37°C for 72 h			Cuenca-Estrella JAC 2011 Richardson HM 2000	Blood inhibits conidation BHI can help to recover some isolates Isolation of several colonies or isolation of the same fungus from a repeat specimen enhance significance
Any	Primary isolation from non-sterile samples (sputum, respiratory aspirates, skin)	Culture on SDA, BHI agar, PDA or PFA with gentamicin PLUS chloramphenicol at 30°C and 37°C for 72 h			Cuenca-Estrella JAC 2011 Richardson HM 2000	Quantitative cultures are not useful and as above
Any	Primary isolation from BAL	As above			Cuenca-Estrella JAC 2011 Richardson HM 2000	Quantitative cultures are not discriminative for infection/colonization and as above

Morphology in primary cultures and subcultures

Population	Intention	Intervention	SoR	QoE	Reference	Comment
Any	Identification of species complex	Macroscopic and microscopic examination from primary cultures			Klich. Identification of Common <i>Aspergillus</i> Species. 2002 Cuenca-Estrella JAC 2011	Colony color Conidium size, shape and septation. Color of conidia and conidiophore and conidiogenesis (tease or tape mounts are preferred) Expertise needed for interpretation
Any	Identification of species complex	Culture on identification media at 25-30°C and 37°C (2% MEA and Czapek-Dox agar) and microscopic examination			As above	As above
Any	Identification of species complex	Culture at 45°C	В	III	As above	Presumptive ID of <i>A. fumigatus</i> complex

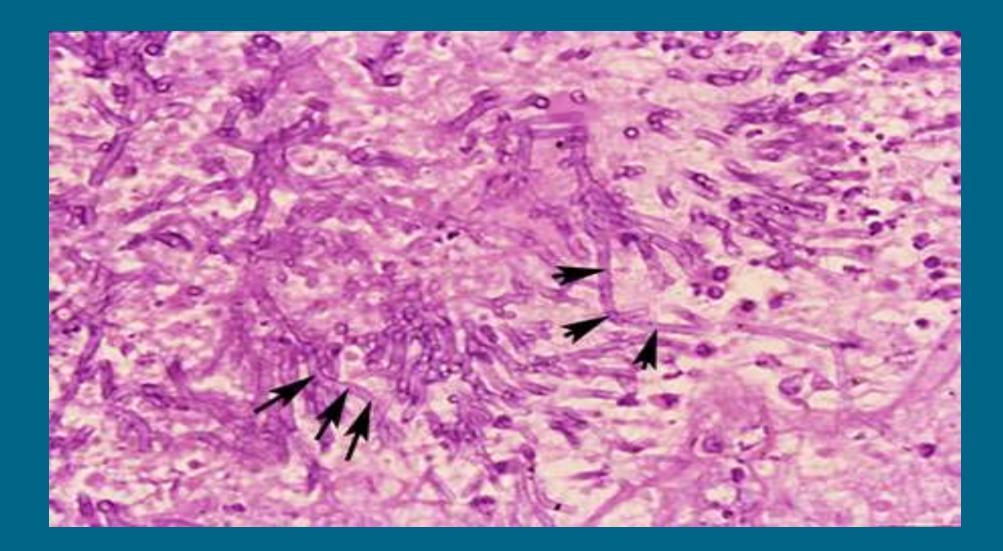
Population/Test: Positive culture - MALDI-TOF

Population	Intention	Intervention	So R	Qo E	Reference	Comment
Any	To establish epidemiological knowledge and to guide treatment	MALDI-TOF MS identification			Alanio 2011 Bille 2012 De Carolis 2012 Lau 2013	In house database

Positive culture. Molecular ID

Population	Intention	Intervention	SoR	QoE	Reference	Comment
Any	Identification at species level	Sequencing of ITS and beta-tubulin areas			Balajee JCM 2009 Samson. Studies in Mycology 59: <i>Aspergillus</i> systematics in the genomic era. 2007	Essential investigation in some cases Reference laboratory and databases can be needed (Mycobank at CBS)

Epidemiology of aspergillosis is tough because.....


- EORTC criteria: Probable aspergillosis (50-80% in last clinical trials)
- Proven aspergillosis (50-75%) by microscopic examination only. No ID of species
- Low performance of cultures
- Laboratory contaminants

Molecular diagnostics: biopsy-detection and ID of fungus

Population	Intention	Intervention	SoR	QoE	Reference	Comment
Any	To detect and specify a fungus obtained from a biopsy	Apply molecular analyses in microscopic hyphal- positive and hyphal- negative specimens			Buitrago MJ. CMI 2013, 19:E271-7 Lass-Flörl C. CID 2007; 45: e101-e104 Lass-Flörl C. Can JM 2011: 57: 765-768 Lass-Flörl C. JCM 2012; 51: 863-868	In hyphal-positive specimens: High sensitivity (> 90 %) and high specificity (99 %); Various molecular based techniques available. In hyphal-negative specimens: Sensitivity (57 %) and Specificity (96 %) decrease. Ability to distinguish other fungi. Performance only in addition to other tests.
		In wax embedded specimens			Paterson PJ. MP 2003; 56:368-70	TaKaRa DEXPAT kit and QIAamp DNA mini kit detected less than 10 conidia/sample.
		Species identification of molds in histological tissue sections			Paterson PJ. CID 2006, 42:51-6	Validation and clinical application of molds in tissue. The validity of the method was demonstrated with the establishment of a molecular diagnosis in 52 cases (93%).

ORIGINAL ARTICLE

Efficacy of DNA amplification in tissue biopsy samples to improve the detection of invasive fungal disease

M. J. Buitrago¹, J. M. Aguado², A. Ballen², L. Bernal-Martinez¹, M. Prieto³, A. Garcia-Reyne², J. Garcia-Rodriguez³, J. L. Rodriguez-Tudela¹ and M. Cuenca-Estrella¹

 Instituto de Salud Carlos III, Majadahanda, 2) Hospital Universitario '12 de Octubre', Instituto de Investigación Hospital '12 de Octubre' (i + 12), School of Medicine, Universidad Complutense and 3) Hospital Universitario La Paz, Madrid, Spain

84 patients were analyzed
68/84 (81%) were cultured
56% of sensitivity (38/68 cases)
38 cases positives:

Species	Nb of cases	Rate
Aspergillus	21/38	55%
Mucorales	9/38	23.7%
Candida	7/38	18.5%

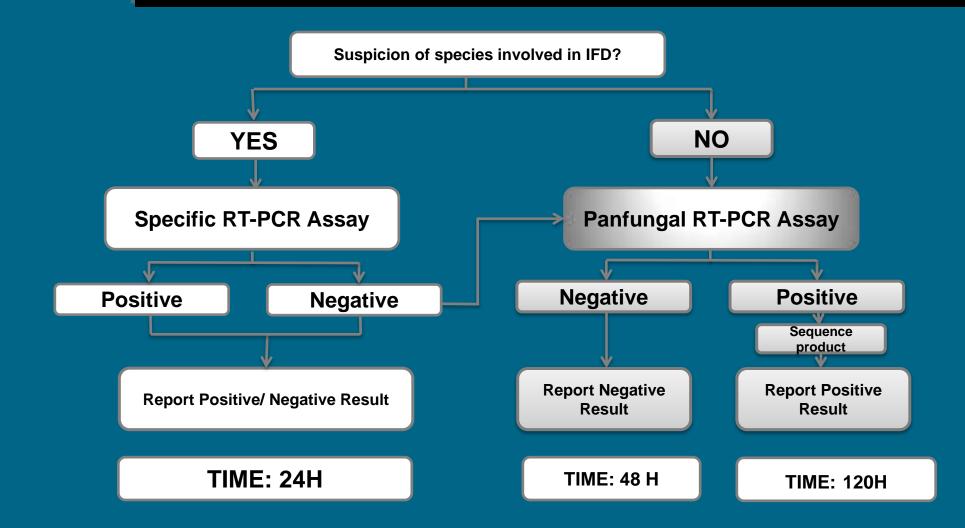
ORIGINAL ARTICLE

Efficacy of DNA amplification in tissue biopsy samples to improve the detection of invasive fungal disease

M. J. Buitrago¹, J. M. Aguado², A. Ballen², L. Bernal-Martinez¹, M. Prieto³, A. Garcia-Reyne², J. Garcia-Rodriguez³, J. L. Rodriguez-Tudela¹ and M. Cuenca-Estrella¹

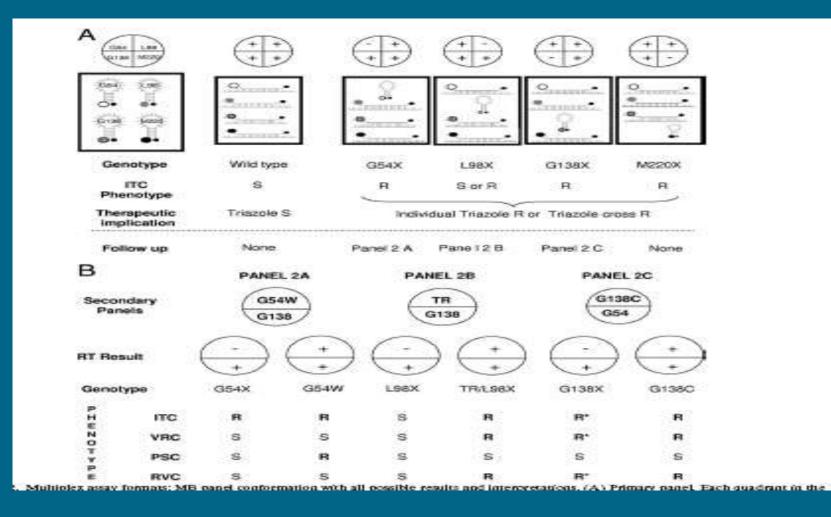
 Instituto de Salud Carlos III, Majadahonda, 2) Hospital Universitario '12 de Octubre', Instituto de Investigación Hospital '12 de Octubre' (i + 12), School of Medicine, Universidad Complutense and 3) Hospital Universitario La Paz, Madrid, Spain

PCR-based technique detected fungal DNA in 75/84 patients (89.3%) Six cases, cultures were also negatives


Species	Nb of cases	Rate
Aspergillus	50/75	66.6%
Mucorales	9/75	12%
Candida	11/75	14.6%

MYCOLOGY

Scheme of procedures performed on biopsy samples Buitrago et al JCM in press


Alternatively, when specific assays were negatives, a panfungal assay was performed

JOURNAL OF CLINICAL MICROBIOLOGY, Apr. 2006, p. 1200–1206 0095-1137/08/508.00+0 doi:10.1128/JCM.02330-07 Copyright © 2008, American Society for Microbiology. All Rights Reserved.

Rapid Detection of Triazole Antifungal Resistance in Aspergillus fumigatus[∇] Guillermo Garcia-Effron,¹ Amanda Dilger,¹ Laura Alcazar-Fuoli,² Steven Park,¹ Emilia Mellado,² and David S. Perlin¹*

Vol 46, No. 4

High-frequency Triazole Resistance Found In Nonculturable *Aspergillus fumigatus* from Lungs of Patients with Chronic Fungal Disease

David W. Denning,^{1,2,3} Steven Park,⁴ Cornel ia Lass-Rorl,⁵ Marcin G. Fraczek,^{2,3} Marie Kirwan,^{1,2} Robin Gore,² Jaclyn Smith,² Ahmed Bueid,² Caroline B. Moore,³ Paul Bowyer,² and David S. Perlin^{2,4}

Azole resistant *A. fumigatus* Patients' characteristics

- Recurrent infections
- Breakthrough infections
- Tandem repeat mechanism of resistence: 85% mortality
- Evidences from animal models
- Mellado et al, Verweij et al

bjh research paper

Epidemiology and outcome of infections due to Aspergillus terreus: 10-year single centre experience

	A. terreus	Other species
Dissemination	63%	32%
CNS	31%	
Skin	29%	
AmB response	20%	47%

Summary for Aspergillus

- Increasing rates of azole resistance in *A. fumigatus* (could have cryptic species)
- A. terreus R AmB and dissemination
- Molecular identification of *Aspergillus* enlarges its epidemiology
 - More species causing IFI
 - Different profile of AFST

C Recommendations for routine daily practice. % of rare species

Sections	%	Remark
Section <i>Fumigati</i>	4%	A. lentulus is multi-resistant
Section Terrei	4%	No enough data
Section Flavi	11%	A. alliaceus, AMB and echinocandins resistant
Section Nigri	50%	A. tubingensis , azole resistant
Other rare species	3%	<i>A. calidoustus</i> , azole resistant
TOTAL	14% (40/277)	

Recommendations for routine daily practice Ann NY Acad Sci 2012

- Classification of species by molecular methods could be useful for clinical management of patients
- 14% of Aspergillus clinical isolates are sibling and cryptic species
- Particularly useful in *Fumigatus, Nigri* (*tubingensis* azole resistant) and *Flavi* (*alliaceus* AMB resistant)

Recommendations for routine daily practice Ann NY Acad Sci 2012

- Surveys to know local epidemiology
- Cases without isolation or non-culturable:
 - Direct detection in clinical samples. PCR-based
 - Inclusion of environmental isolates and relation studies

Recommendations for routine daily practice Ann NY Acad Sci 2012

- Cases with culture from deep sites:
 - Beta-tubulin sequencing
 - Other possibilities:
 - Matrix-assisted laser desorption/ionization/time-offlight mass spectrometer. Alanio et al. Clin Microbiol Infect. 2011
 - Luminex assay. Etienne et al. J Clin Microbiol. 2009
 - If not, antifungal susceptibility testing (patient management) and reference center (epidemiology)