Dynamics of dsRNA mycoviruses in black Aspergillus populations

Anne D. van Diepeningen, Alfons J.M. Debets, and Rolf F. Hoekstra

Dept. of Genetics, Wageningen University, The Netherlands

Overview

Dynamics of dsRNA mycoviruses in black Aspergillus populations:

- Isolation of black Aspergilli
- Virus presence and variance
- Model for balanced infection
- Transfer of viruses
- Effects of virus infections
- Conclusions

Isolation of black Aspergilli

- Dark brown to black conidiospores
- Mop-like conidiophores
- Asexual (Parasexual?)
- Species complex
 - A. niger
 - A. tubingensis
 - A. carbonarius
 - A. japonicus

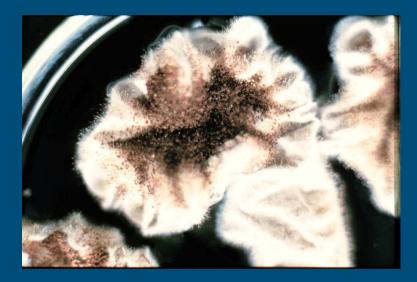
A. aculeatus

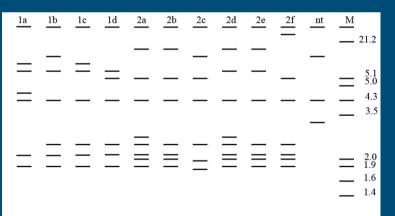
- A. foetidus
- A. heteromorphus
- A. brasiliensis
- A. vadensis

Isolation of black Aspergilli

- Saprophytic lifestyle
- Versatile metabolism

Exclusive isolation on 20% tannic acid
Growth on up to 80%!
All culture collection strains

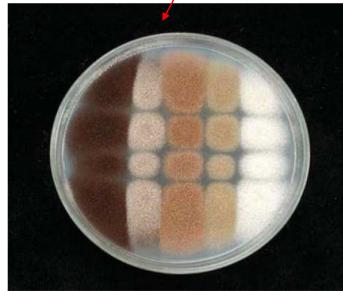




Isolation of black Aspergilli

- Soil and Humus samples collected world wide, 1990-1995
- Isolation on 20% tannic acid
- Single spore colonies
- characterization on mt RFLP

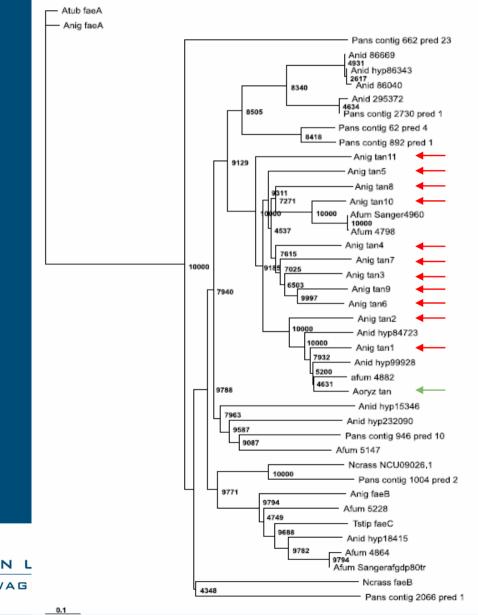
Varga *et al* 1994 Can. J. Microbiol 40:612 Kevei *et al* 1996 Ant.v.Leeuwenhoek 70:59 Hamari *et al* 1997 Ant.v.Leeuwenhoek 72:337




Growth on 20% tannin: not associated with black spores

20% tannin Colour mutants^a 20% tannin Strain Name Colour mutants^a Strain Name A. carbonarius fwn, brn N050 N067 fwn, brn, gry +A. nanus +N055 A. japonicus fwn, brn, whi, gry N068 A. usami fwn, brn +A. jap. aculeatus fwn, brn, whi fwn, brn N057 N070 A. intermedius +A. niger A. foetidus fwn, brn N059 fwn N076 +fwn, brn N062 A. awamori A. niger fwn, brn, grv, olv +N400 +A. phoenicis fwn, brn N064 +

^a Conidium colours: fwn, fawn; brn, brown; whi, white; gry, grey; and olv, olive green.


Table 2. List of Aspergillus colour mutants tested on 20% tannic acid medium.

Growth on 20% tannin: 11 tannase-like genes

Isolation of black Aspergilli: 668 natural isolates

	Mito	chondial	haploty	pe										
	A. nig	ger-aggre	gate											
	•A. n	iger'b			*A. i	tubinge	nsis' ^b				A. jap ^c	A. car ^d	No. of	Density (No. of
Country ^a	1a	lb	lc	ld	2a	2b	2c	2d	2e	2ſ			isolates	spores/g soil)
Canada (3)	140		4	6	-	141	-	-	-	8			10	0-2
France (4)	3	-	1	-	~	2	100	-	1000	-	3	0.00	9	0-2
Netherlands (27)	1	6	5	-	40	6				-		-	58	0-8
Switzerland (2)	123	141		-	2	1	1	141	144	2	14	20	4	0-3
Morocco (2)	-	1	24	-	6	2	-	1.000	22	-	1	1	10	25-85
Egypt (2)		7	7	-	10	-		-		\geq	-	-	24	8-10
Israel (4)	100	1	1.00	-	4	100	-	-			1.000	1	6	2-3
Guinea (1)		6	3	-	-					-			9	65
Gabon (5)	3	24	5	2	4	7	1	141	1	2	40	2	85	40-60
Kameroon (6)	1	16	6	-	1	2	6		24	-	9	1	42	25-150
Brazil (4)	3 27	8 77	20	-	5	2 5	-	100	\sim	8	-	-	41	5075
Indonesia (12)	27	77	74	1	50	33	4	9	14	1	23	7	320	50-250
Malaysia (1)				-	1								6	Nd.
Nepal (1)	-	5 6	-	-	-	-	-	-	-	-	-		6	4-6
Australia (1)	-	1	24	-		-	-	-	24	4	24	-	4	8-15
New Zealand (2)	140	7	243	12	1	440	-	-	244	1	244	100	8	6-12

* Per country the number of samples investigated is given between brackets.

^b A. niger mitochondrial RFLP haplotypes 1a-1d and A. tubingensis haplotypes 2a-2f as recognised by Varga et al. (1993, 1994).

e jap, A. japonicus and direct relatives (Hamari et al. 1997).

d car, A, carbonarius and direct relatives (Kevei et al. 1996).

Van Diepeningen *et al.* 2004 Mycol. Research 108:919

High

density

Isolation of black Aspergilli: World wide well mixed

	Mito	chondial	haploty	pe										
	A. nij	ger-aggre	gate											
	•A. n	iger' ^b			*A.	tubinge	nsis' ^b				A. jap ^c	A. card	News	Density
Country*	1a	lb	lc	ld	2a	2b	2c	2d	2e	2f			No. of isolates	(No. of spores/g soil)
Canada (3)	140	1.00	4	6	\wedge	141	1.00	100	-		-	-	10	0-2
France (4)	3			-		2	-	-		-	3	0.000	9	0-2
Netherlands (27)	1	6	1 5	-	40	2 6		-		-			58 4	0-8
Switzerland (2)	123	141		1	2	1	1	141	1.44	2	14	20	4	0-3
Morocco (2)	-	1.00	24		6	2	-	1.22	221		1	1	10	25-85
Egypt (2)		7	7	-	10	-		-	\sim	8	14	-	24	8-10
Israel (4)	100	1	1.000	-	4	100	\rightarrow	-	1.000		1.000	1	6	2-3
Guinea (1)	-	6	3	-						-		-	6 9	65
Gabon (5)	3	24	3 5	-	4	7	1	141	1	2	40	20	85	4060
Kameroon (6)	1	16	6	-	1	2	6	1.22	24	-	9	1	42	25-150
Brazil (4)	3	8	20	1	5	5	-	-	1.000		-	-	41	50-75
Indonesia (12)	27	77	74	1	50	33	4	9	14	1	23	P	320	50-250
Malaysia (1)		5		-	1		1.000	1.00					6	n.d.
Nepal (1)	-	6	-	-	-	-	-	-	-	-	-		6	4-6
Australia (1)	-	1	24		\geq	-	-	-	1	4	24	-	4	8-15
New Zealand (2)	1445	7	243	-	1	140	1	100	241	1	243	100	8	6-12

* Per country the number of samples investigated is given between brackets.

^b A. niger mitochondrial RFLP haplotypes 1a-1d and A. tubingensis haplotypes 2a-2f as recognised by Varga et al. (1993, 1994).

e jap, A. japonicus and direct relatives (Hamari et al. 1997).

d car, A, carbonarius and direct relatives (Kevei et al. 1996).

Van Diepeningen et al 2004 Mycol. Research 108:919

Isolation of black Aspergilli: predominantly *A.niger + A.tubingensis*

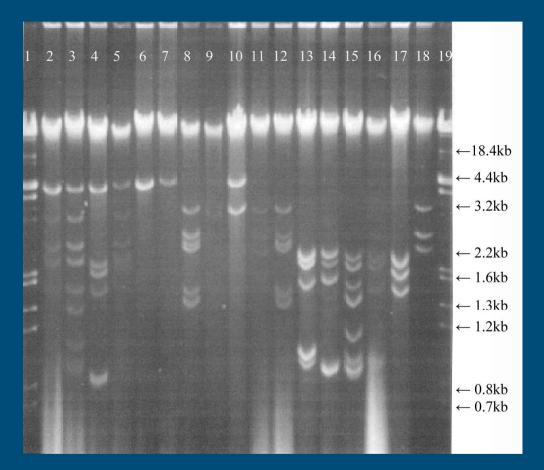
	Mito	chondial	haploty	pe										
	A. nij	ger-aggre	egate											
<	·A. n	iger' ^b			*A. (tubinge	nsis' ^b			•	A. jap ^e	A. car ^d		Density
Country [#]	la	1b	lc	ld	2a	2b	2c	2d	2e	2f			No. of isolates	(No. of spores/g soil)
Canada (3)	140	100	4	6	-		-		-	8		(10)	10	0-2
France (4)	3		1	-	~	2		-			3	100	9	0-2
Netherlands (27)	1	6	5	-	40	6				-			58	0-8
Switzerland (2)	123	141		5	2	1	1	14	1.44			20	4	0-3
Morocco (2)	-	140	24		6	2		1223	221		1	1	10	25-85
Egypt (2)		7	7	-	10	-	-	-	-		-	-	24	8-10
Israel (4)	-	1	1.000		4	1000	-	-	1.000		1.000	1	6	2-3
Guinea (1)		6	3	-	-					-		-	9	65
Gabon (5)	3	24	5	-	4	7	1	141	1	1	40		85	40-60
Kameroon (6)	1	16	6		1	2	6	100	24	-	9	1	42	25-150
Brazil (4)	3	8	20	-	5	2 5	-	-	\rightarrow	-	-	-	41	50-75
Indonesia (12)	27	77	74	1	50	33	4	9	14	1	23	7	320	50-250
Malaysia (1)		5	-	-	1	-				-		-	6	n.d.
Nepal (1)	-	6	-	-	-	-	-	-	-	-	4	-	6	4-6
Australia (1)		1		2		-	-	-		4	24	-	4	8-15
New Zealand (2)	140	7	243	100	1	140	-	-	243	1	244	100	8	6-12

* Per country the number of samples investigated is given between brackets.

^b A. niger mitochondrial RFLP haplotypes 1a-1d and A. tubingensis haplotypes 2a-2f as recognised by Varga et al. (1993, 1994).

e jap, A. japonicus and direct relatives (Hamari et al. 1997).

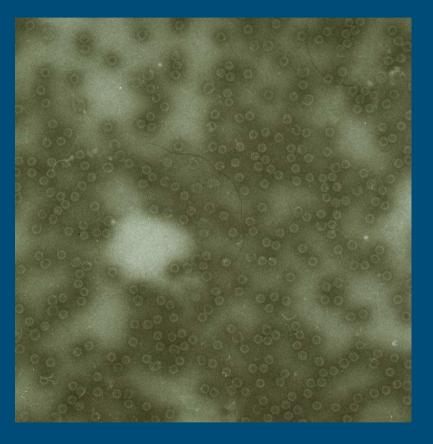
d car, A, carbonarius and direct relatives (Kevei et al. 1996).


Van Diepeningen *et al* 2004 Mycol. Research 108:919

Virus presence and variance

Large variation:
1-8 dsRNA fragments
0.7 – 4.5 kb

 Different viruses and/or defective interfering particles



Virus presence and variance

EM:

- isometric particles
- 25 40 nm

World wide virus distribution: 10% infection nearly all types and locations

Country	Mitoch	nondrial hapl	lotype										Total
	A. nige	r			A. tubinge	ensis					A. jap ^a	A. car ^b	
	la	1ь	1c	1d	2a	2b	2c	2d	2e	2f	CERCENT AND		
America													\wedge
Canada			0/4	0/6				2	2200			100	0/10
Brazil	0/3	1/8	1/20	0/0	0/5	0/5				2.5.2		222	2/41
Europe	0/5	110	1120		0/5	015					_		2/41
France	0/3		0/1		_	0/2					0/3		0/9
Netherlands	0/6	2/10	2/6		5/53	0/2	0/1	0/1		100		1029) 	9/84
Switzerland	0/0	210	270	_	0/2	0/1	0/1	0/1		1995			0/4
Africa		1000		100	0/2	U/ I	0/1			000		1000	0/4
Morocco				_	0/6	1/2					0/1	0/1	1/10
Egypt		0/7	0/7		0/10	1/2				0.00	0/1		0/24
Israel	6 <u></u> 6	0/1	0/7	3 <u>1</u> 11	1/4	12-12	19 <u></u> 11	10		35.0	_	0/1	1/6
Guinea	_	0/6	3/3		1/4								3/9
Gabon	0/3	4/24	1/5		1/4	0/7	0/1		1/1		5/40	1999) 	12/85
Cameroon	0/1	1/16	0/6		0/1	0/2	0/6		1/1		0/9	0/1	1/42
Asia	0/1	1/10	0/0	200	0/1	W 2	0,0		2.0	100	015	0/1	1/42
Indonesia	1/27	12/77	6/74	0/1	7/50	1/33	0/4	2/9	2/14	0/1	2/23	1/7	34/320
Malaysia		0/5			0/1								0/6
Nepal		0/6							-				0/6
Oceania		0,0		17-16								10.51	010
Australia										0/4	-		0/4
New Zealand	_	0/7			1/1					57 -	_		1/8
Total	1/43	21/167	13/126	0/1	15/143	2/59	0/13	2/10	2/15	0/5	7/76	1/10	> 64/668

Virus infections are given per number of isolated strains of a certain haplotype and per country.

^a jap = japonicus and direct relatives.

van Diepeningen et al., 2006 Fungal Genet. Biol. 43:446-452

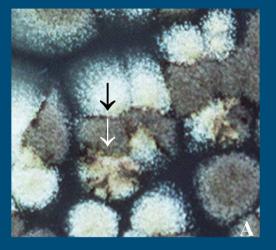
Model: virus dynamics 10% mycovirus infection in the black Aspergilli Balance ? Gain Loss 'Curing' (vertical) Infection transfer) (horizontal transfer) Fitness costs to host Benefit to the host

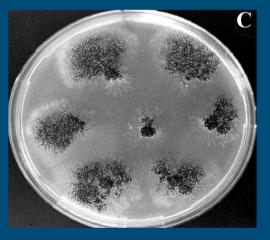
<u>Vertical</u>: to offspring <u>Horizontal</u>: via hyphal anastomosis

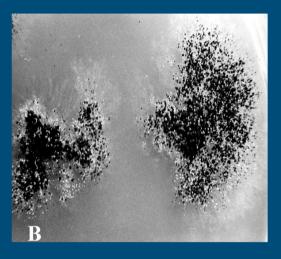
Vertical:

several hundreds of single conidiospores: no loss of viruses

Horizontal virus transfer:


Donor → Acceptor ↓		Ind 1 (1b)	.8.16 *	Ind (1b)	1.8.7*	Ind l (lc)	1.7.8+	Ind l (lc)	1.8.22*	Ind (2a)	1.6.19+	Ind ((2d)	.8.26*
Ind 1.8.2 cnx Ind 1.8.1 cnx Ind 1.8.13 cnx	(la) (lb) (lc)		1.1	16463	-	t.	1		-	Ξ	2	1.1.1	111
Ind 1.8.9 cnx Ind 1.8.39 cnx	(1d) (2a)	-<	•	ş	2	Ξ	Ξ	+ n,d	2	- 	-	2	<u>z.</u> ,
Ind 1.8.42 <i>cnx</i> Ind 1.7.6	(2b) (J)	n.d.	 n.d.		-	- n.d.	1	- n.d.	2	- n.d.	Ξ	n.d.	n.d. -
Ind 1.5.5* <i>cnx</i> Ind 1.7.8* <i>cnx</i>	(1b) (1c)			7	-	÷	i t es				3 7 3	1	÷
Ind 1.8.22* cnx Ind 1.6.19 *cnx	(1c) (2a)	-	-	2	2	2	223 -	_	_	8 <u>0</u> 8	12	-	


After 6 weeks intensive growth/ regular damage: <u>Very little transfer</u>: due to heterokaryon incompatibility?



Tests for heterokaryon (in)compatibility:

- A. Color complementation
- B. Complementation auxotrophic mutations
- C. Dominant resistancies
- D. Chlorate resistance/ nitrate deficiency (nia and cnx)

heterokaryon (in)compatibility

Strain	mt	Ind 1.8 2	Ind 1.8 29	Ind 1.8 1	Ind 1.8 3	Ind 1.5 5	Ind 1.8 7	Ind 1.8 10	Ind 1.8 11	Ind 1.8 19	Ind 1.8 16 +	Ind 1.8 16	Ind 1.8 13	Ind 1.4 24	Ind 1.8 21	Ind 1.8 22	Ind 1.7 8	Ind 1.8 9	Ind 1.6 19	Ind 1.6 23	Ind 1.8 42	Ind 1.2 15	Ind 1.8 26	Ind 1.4 32	Ind 1.4 29	N4 00	Z 1.1	N0 62
Ind 1.8.2	Ia	+																										
Ind 1.8.29	1a 1b 1b 1b 1b 1b	-	+																									
Ind 1.8.1	1b	1	-	+																								
Ind 1.8.3	16	- 21	-	-	+																							
Ind 1.5.5	1b	-		+		+																						
Ind 1.8.7	15	-	-	102		20	+																					
Ind 1.8.10	16	1	-	-	-	1		141									N.	1 a	~+	OK			fa	~ r	nn	atil		
Ind 1.8.11	16	-	_	-		2	-	+	+								- IV	4O:	SL	ar	E S	ser	I- C	U	HD	alli	DIE	
Ind 1.8.19	1b	123	1		-	2.1	22			+																		- C
Ind 1.8.16 *	16	-					-	-		-	+						b .	a de la	in		~ ~		เม		ta	oth		
nd 1.8.16 * 14	1b	-		-	-	2			-	-	+	+					D][][$\mathcal{L}(0)$		160	$\left \right $	e			Ie	r S
Ind 1.8.13	1c	1			-	2		-		-	2	12	+													••••		
Ind 1.4.24	10	2	_	22	-	1	-	-	22	2	1	-	-	+														
Ind 1.8.21	le	1	-	20	1	2	-	-	1.1	2	-		-		+													
Ind 1.8.22		-	-	-	_	_	-	-	-	-	-	-(+	-	11	4												
Ind 1.7.8	10	121	-		1	1	1			1	1	X	$ \rightarrow $		21		-											
	27.0					_	-	-	-	111	_	((+	121											
0.8.1 bn	1d	-	-	-								~	/	-		\sim	1		÷									
Ind 1.8.9 Ind 1.6.19	1d 2a	-		3	2	1	- 22		· · · · · · · · · · · · · · · · · · ·											14								
Ind 1.6.19	1d 2a 2a		1				-		-	_	_	_	_		_	_												
Ind 1.6.19 Ind 1.6.23	1d 2a 2a 2b	1.1.1.1				2	2	2	20	5	8	5	20	34	3	2	20	20	24	3	+							
Ind 1.6.19 Ind 1.6.23 Ind 1.8.42	1d 2a 2b 2b	1.1.1.1	1.1.1.1		10 E.423	9 E.E.E	1.10	1.1				54.5			EKO	100.0	-	-			+	+						
Ind 1.6.19 Ind 1.6.23 Ind 1.8.42 Ind 1.2.15	1d 2a 2b 2b 2b	11111	1.1.1.1.1		1. F. 4. 19	CIERS IS	1.1.1.1			0.4.1.3	CHECK	1.1.1	1.1.1		0.1.10	0.1.1.1	1.1.1.1			51.13	+ -	+	+					
Ind 1.6.19 Ind 1.6.23 Ind 1.8.42 Ind 1.2.15 Ind 1.8.26	1c 1d 2a 2b 2b 2d	11111	11111	11111	C.R.W.P.P.	DISERT F	1.1.1.1	1.1.1.1.1	1111	E.C.C.C.K.J	CAPACIES.	1.1.1.1	1111		E.C. J. M.	01010104	1111			51.1.1.2	+ 1 1 1	+	+	4				
ind 1.6.19 ind 1.6.23 ind 1.8.42 ind 1.2.15 ind 1.8.26 ind 1.4.32	1d 2a 2b 2b 2d J	111111	11111		C. 10423-0	ENDER 10	111111	1.1.1.1.1		1.1.1.1.1	Call Colors	11111	1.1.1.1	1111	E.J. J. J. J.	1010101	1.1.1.1	1111	1111	54 T 14	+111	+	t:	+	Ŧ			
Ind 1.8.9 Ind 1.6.19 Ind 1.6.23 Ind 1.8.42 Ind 1.2.15 Ind 1.8.26 Ind 1.4.32 Ind 1.4.29	1d 2a 2b 2b 2d J C	1111111	111111		the contraction of	A PURE P	1 1 1 1 1 1			-11.1.1 F	CI L'ANGLES	1.1.1.1.1	11111	11111	-3 E.U.T.K.)	21 12/22/21	1.0000	1.1.1.1.1		-1113	+ 1 1 1 1	+ 1 - 1 +	+	+ -	+			
Ind 1.6.19 Ind 1.6.23 Ind 1.8.42 Ind 1.2.15 Ind 1.8.26 Ind 1.4.32 Ind 1.4.29	J C Ia	11111111	11111111		CO CUMERS DO	51 PURE 1	1.11111111			EST ELOCION	NUMBER OF	111111			E-1 E-1 E-1	ENERGI ESA	0111110	111111		-1113 E-3	+1111	+ 1/4 1/24	* 1 - 1	+	+	+		
Ind 1.6.19 Ind 1.6.23 Ind 1.8.42 Ind 1.2.15 Ind 1.8.26 Ind 1.4.32	1 C				a eta energia lo	a estatesta te				EST ELLER)	N CO COMPEN	1.1.1.1.1.1.1.1.1			1 E-3 E.C.F.V.	0.621 62026	0.6.0.6.0.6.6.0	1.5.4.5.4.9.6		1 E-1 E-1 ()	+ 111 1 111	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	0 ES1 EX	+ - + -	+	+	+	

Transfer of viruses: can virus free isolates be infected?

Protoplast fusion

Protoplast Fusion Experiment - black Aspergilli
 Independent transfer of mt-oli^r and virus

			Bla	ck Asperg	tillus	donors		
Back Aspergillus	In	d 1.5.5	Ir	id 1.7.8	Ind	1.8.16	Inc	11.8.3*
acceptors	I	П	1	11	I	п	I	П
Ind 1.8.1, <i>fwn, nta</i>	+	4/4	$\dot{\mathbf{t}}$	73/77	5	4/6	÷	0/9
Ind 1.8.3, fwn, nia	-	0/10	-	0/10	+	4/10	+	10/10
Ind 1.8.9, fwn, cnx	\rightarrow	10/10	+	4/10	+	0/10	÷.	12/12
Ind 1.8.42, fwn, nia		0/10	t.	10/10	+	0/10	+	0/10
Ind 1.5.5, fwn, cnx	X	Х	+	10/10	X	Х	X	Х
Ind 1.7.8, fwn, cnx	+	0/10	Х	Х	+	0/10	X	X
Ind 1.8.16, fwn, cnx	X	Х	+	10/10v	X	Х	Х	Х
N062, fwn, nia	4	0/10		0/6	12	0/2		0/8

•55-60% transfer: virus free isolates can become infected

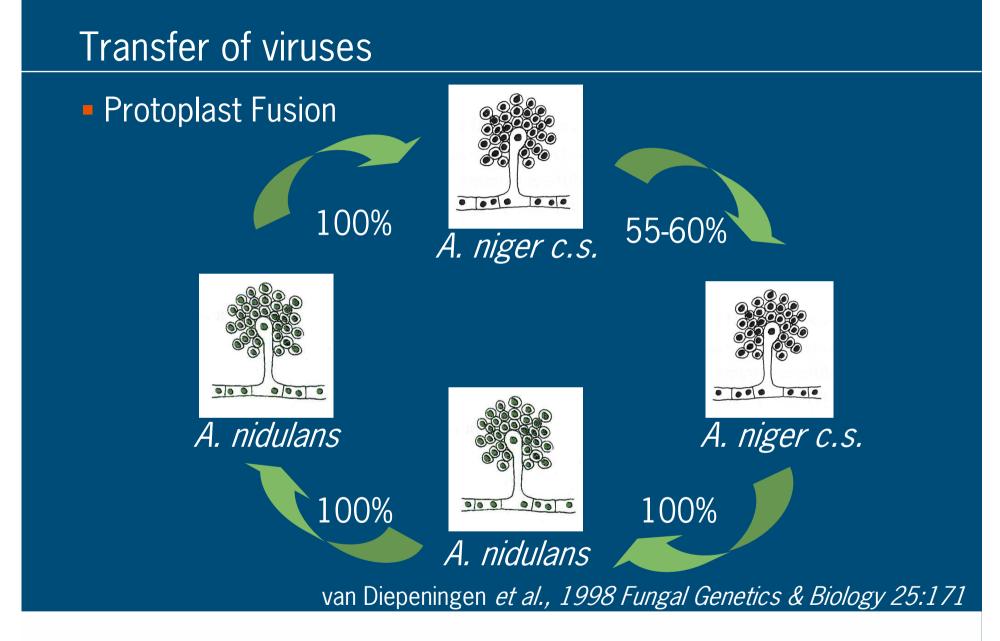
Protoplast Fusion - black Aspergilli to A. nidulans

A. ntdulans		Black As	pergillus donors	
acceptors	341	Ind 1.7.8	Ind 1.8.7	Ind 1.8.16
701, nia	+	+	+	+
702, nia	+	+	+	+
701. nia	+	+	n.d.ª	+
704, nia	+	+	+	+

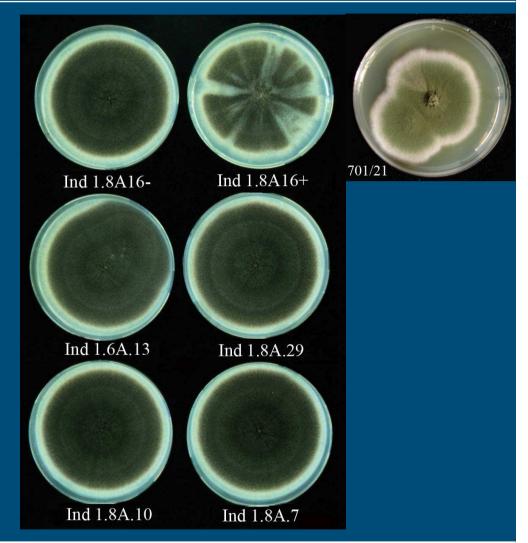
100% transfer from *A.niger* to *A.nidulans*In nature no infections known in *A. nidulans*

Protoplast Fusion – A. nidulans to A. nidulans

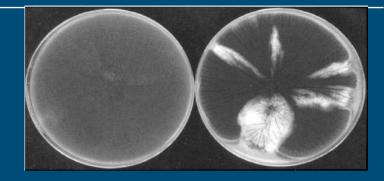
A. nidulans acceptors	A. nidulans donor: 701
701, nta	+
702, nia	+
701. nta	+
704, nta	+

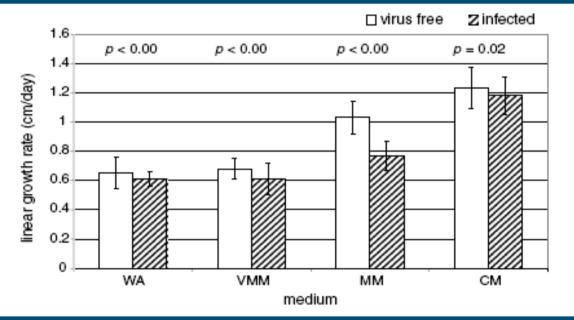

 Between heterokaryon incompatible *A. nidulans* strains 100% transfer

Protoplast Fusion - A. nidulans to black Aspergilli

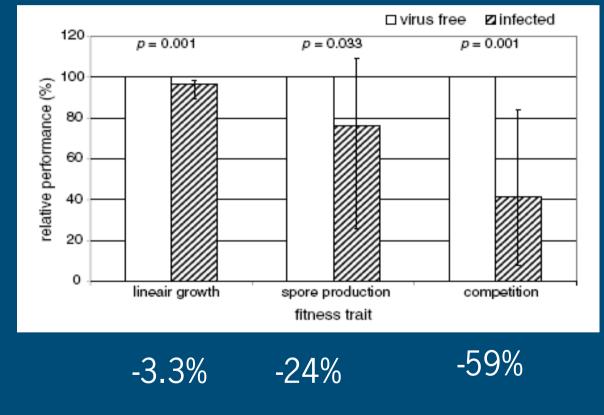

Black Aspergillus acceptors	A. nidulans donor: 701
Ind 1.8.1, <i>fwn, nia</i>	+
Ind 1.8.3, <i>fwn, nia</i>	+
Ind 1.8.9, <i>fwn, cnx</i>	+
Ind 1.8.42, <i>fwn, nia</i>	+
N062, <i>fwn, nia</i>	±]
100% Transfer	hsi

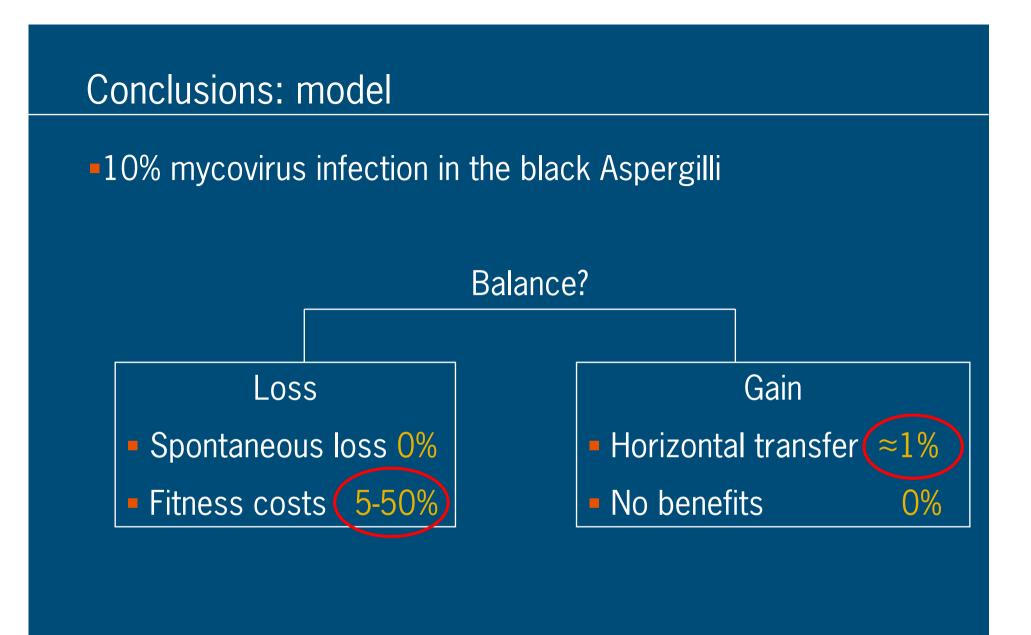
- Mycoviruses: Cryptic infections
- 1/68 infected strains phenotypic effect
- \rightarrow virus titer effect





- Quantification fitness effects
 - Isogenic lines from transfer experiments
- Resource competition:
 - Linear Growth Rate
 - Spore Production
- Interference competition
 - Competition with reference strains


Linear Growth Rate – Ind 1.8.16



 Resource and interference competition average effects of 'cryptic' viruses

Conclusions

- 20% tannic acid selection all black Aspergilli
- 10% infection, high diversity, world-wide
- Transfer limited by heterokaryon incompatibility
- Large fitness consequences virus infections
- Balance fitness costs transfer rate?
- \rightarrow No balance?
- \rightarrow other ways of transfer?
- \rightarrow fitness effects in nature?

Dynamics of dsRNA mycoviruses in black Aspergillus populations

Questions and suggestions?

