

Clinica delle Malattie Infettive e Tropicali Università degli Studi dell'Insubria – Ospedale di Circolo e Fondazione Macchi, Varese "Second Opinion" Infettivologica <u>Centro Nazionale Trapianti, ISS, Roma</u>

Prevention of invasive fungal infections in solid organ transplant recipients: Universal or Targeted Prophylaxis?

Paolo Grossi

4th Trends in Medical Mycology Athens, Greece 18-21 October, 2009

Patients at greatest risk of invasive fungal infection

- Haematopoietic stem cell recipients
- Neutropenic patients with leukaemia treated by intensive chemotherapy
- <u>Solid organ transplant recipients</u>
- Critically ill patients
- Preterm babies admitted to neonatology units
- Patients receiving chronic treatment with corticosteroids
- Patients with acquired immune deficiency syndrome (AIDS)

Invasive Fungal Infections in Solid Organ Transplant Recipients

- Frequency and pathogens vary with type of transplant
- Major center-to-center variation in frequency of IFIs
- Substantial differences in IFIs between SOT and HSCT recipients

Invasive fungal infections in transplant recipients TransNet Surveillance Program 2001–2006 1181 IFI

Solid organ transplant (n = 292)		Hematopoietic stem cell transplant (n= 829)	
Candidiasis	53%	Aspergillosis	44%
Aspergillosis	19%	Candidiasis	29%
Cryptococcosis	8%	Other moulds	11%
Other moulds	6%	Zygomycoses	6%
Endemics	5%		
Zygomycoses	2%		

Pappas P., et al. ICAAC 2007

Epidemiologic characteristics of invasive aspergillosis in transplant recipients			
	Incidence range % (mean)	Mean days to onset (range)	% Mortality
Liver	1-8 (2)	17 (6-1107)	87
Lung	3-14 (6)	120 (4-1410)	68
Heart	1-15 (5.2)	45 (12-365)	78
Kidney	0-4 (.7)	82 (20-801)	77
Pancreas	1.1-2.9	NA	100
Small bowel	0-10 (2.2)	289 (10-956)	66

Modified from Singh N., et al. CMR 2005;18:44-69

Antifungal agents for invasive mycoses

- <u>Amphotericin B</u>
- Lipid associated polyenes
 - ABLC, ABCD, Ambisome
- <u>Azoles</u>
 - Fluconazole
 - Itraconazole (cyclodextrin/intravenous)
 - Voriconazole
 - Posaconazole
- <u>Echinocandins</u>
 - Caspofungin
 - Anidulafungin
 - Micafungin

Use of antifungal drugs in immunocompromised patients

Limited evidence of optimal strategies for utilizing the available antifungal armamentarium Strategies to prevent fungal infections in SOT

Universal prophylaxis

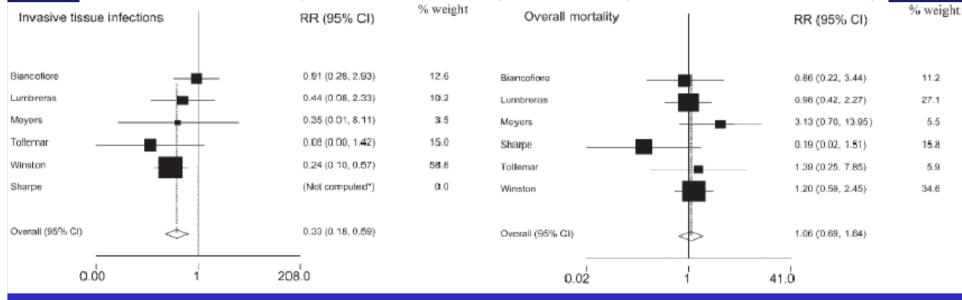
Administration of an agent to all recipients to prevent infection

Potential prevention strategies for invasive fungal infections in OLTX

Candida spp.	Aspergillus spp.	Cryptococcus spp.
 Fluconazole, 100-400 mg per os q.d. for 4-8 weeks after tx (A-I) 	•Lipid-associated amphotericin B, 1 mg/kg, or itraconazole (iv or per os) before and after (4 weeks) OLTX in patients with AFH (C-III)	•Prevention of CMV disease (C-III)
•Lipid-associated amphotericin B, 1 mg/kg for 5 days after transplantation (B-I)	•Microbiological surveillance and antifungal preemptive treatment in immunocompromised individuals (C-II)	•High index of suspicion in severely immunocompromised individuals (C-III)
 Prevention of CMV disease (B-I) SBD (B-III) Targeted therapy with fluconazole based on presence of risk factors (C-III) 	•Prevention of CMV disease (C-III)	

Prophylactic fluconazole in OLTX (400 mg/day i.v. or p.o for 10 weeks)

Variable	Placebo	Fluconazole
Patients n.	104	108
Pts with proven FI, n (%)	45 (43)	10 (9) *
Pts with superficial infection, GI tract, wound or UTI, n (%)	29 (28)	4 (4%) *
Pts with invasive infection of blood, lungs, intra-abdominal, sinuses or multiple organs, n (%)	24 (23)	6 (6%) *


* P <0.001 compared with placebo

Winston DJ, et al. Ann Intern Med 1999;131:729-737

Antifungal Prophylaxis in Liver Transplant Patients: A Systematic Review and Meta-analysis

Mario Cruciani,¹ Carlo Mengoli,² Marina Malena,¹ Oliviero Bosco,¹ Giovanni Serpelloni,¹ and Paolo Grossi³

¹Center of Preventive Medicine, HIV Outpatient Clinic, Verona, Italy, ²Department of Histology, Microbiology, and Medical Biotechnology, University of Padua, Padua, Italy, and ³Department of Infectious Diseases and Tropical Medicine, University of Insubria, Ospedale di Circolo, Varese, Italy

Empiric treatment for suspected fungal infections and overall mortality were not affected by antifungal prophylaxis. <u>Emergence of non-Candida albicans species in</u> <u>patients receiving prophylaxis</u>

Liver Transpl 2006;12:850-858

Antifungal Prophylactic Practices in Liver Transplant Recipients

Centers responding to the survey	67/106 (63%)
Centers using prophylaxis	91%
Universal	28%
Targeted	72%
Retransplantation	81%
Reexploration	65%
Renal replacement therapy	44%

N.SINGH, et al. AJT 2008; 8: 426-431

Antifungal Prophylactic Practices in Liver Transplant Recipients.

Candida prophylaxis	88%
Fluconazole	86%
Mould directed prophylaxis	
Echinocandins	41%
Voriconazole	25%
Polyene	18%

Fluconazole vs non-fluconazole use was associated with higher reported rate of mould infections (aspergillosis, zygomycosis, and scedosporiosis, RR 1.5, 95% CI, 1.0-2.2, p=.04)

N.SINGH, et al. AJT 2008; 8: 426-431

Antifungal prophylaxis according to risk profile Multicenter European Survey

Risk factor	Antifungal agent	No. of centers	%
No risk factors present	No prophylaxis Fluconazole Itraconazole Amphotericin B Lipid formulation of Amphotericin B Nystatin Not known	39 15 1 2 1 1 1	65 25 1.7 3.3 1.7 1.7 1.7
Any risk factor present	No prophylaxis Fluconazole Caspofungin Fluconazole OR Itraconazole Amphotericin B Lipid formulation of Amphotericin B Voriconazole Not known Amphotericin B OR Caspofungin Fluco OR Vorico OR Caspofungin	7 30 3 2 5 8 1 2 1 2 1	12 50 5 3.3 8.3 13.3 1.7 3.3 1.7 1.7

Els Vandecasteele, et al. Transplant International 2009;:1-9

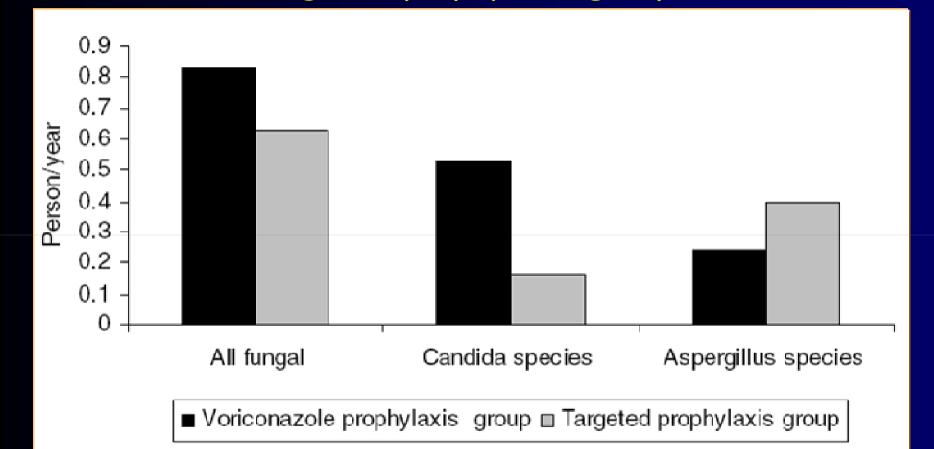
Risk factor	No. of centers	Antifungal agent	No. of centers	%
Re-operation (redo or revision)	22	Fluconazole	12	54.5
		Caspofungin	2	9.1
		Amphotericin B	2	9.1
		Lipid formulation of Amphotericin B	3	13.6
		Voriconazole	1	4.5
		Not known	1	4.5
		Fluconazole OR caspofungin	1	4.5
Primary graft dysfunction	17	Fluconazole	11	64.7
		Caspofungin	1	5.9
		Lipid formulation of Amphotericin B	2	11.7
		Fluconazole OR itraconazole	1	5.9
		Not known	1	5.9
		ltraconazole	1	5.9
Large volume transfusion	15	Fluconazole	10	66.6
		Caspofungin	1	6.7
		Lipid formulation of Amphotericin B	1	6.7
		Fluconazole or voriconazole	1	6.7
		Not known	2	13.3
Fulminant liver failure	10	Fluconazole	7	70
		Amphotercin B	1	10
		Amphotercin B OR caspofungin	1	10
		Not known	1	10
Anti rejection therapy	7	Fluconazole	7	100
Positive culture for fungi	4	Fluconazole	2	50
		Not known	1	25
		Caspofungin	1	25
AB >5 days	4	Fluconazole	4	100
Renal failure/dialysis	3	Lipid formulation of Amphotericin B	1	33.3
		Amphotercin B	1	33.3
		Caspofungin	1	33.3

A Survey of Anti-fungal Management in Lung Tx Post-Tx Prophylaxis for Fungal Infection

Post-transplant prophylaxis	Number of programs (%)
Prophylaxis performed	28 (76)
Sub-groups prophylaxed	
Cystic fibrosis	26 (70)
COPD	21 (57)
Bronchiectasis	17 (46)
Sarcoidosis	16 (43)
IPF	17 (46)
No prophylaxis performed	9 (24)
COPD, chronic obstructive pulmonary disease; Il fibrosis.	PF, idiopathic pulmonary

Dummer S. et al. J Heart Lung Transplant 2004;23:1376-81

A Survey of Anti-fungal Management in Lung Tx Duration of Post-transplant Prophylaxis


	Number of programs
Duration of prophylaxis	(%)
During initial hospitalization	1 (4)
1 month	6 (21)
2 months	3 (11)
3 months	6 (21)
6 months	4 (14)
6 to 12 months	1 (4)
12 months	2 (7)
>12 months	1 (4)
Lifetime	4 (14)
Total	28 (100)

Dummer S. et al. J Heart Lung Transplant 2004;23:1376-81

Voriconazole Prophylaxis in Lung Transplant Recipients					
Voriconazole prophylaxis					
Number of invasive fungal infections	1/65 (1.5%)	7/30 (23%)	0.001		
Rate of non- aspergillus infections at 1 year 0.004					

Husain S, et al. AJT 2006;6: 3008-3016

Comparison of incidences (person years) of colonization in lung transplant recipients between voriconazole and targeted prophylaxis group.

Patient receiving voriconazole prophylaxis had significantly higher incidence of *Candida colonization* 0.53/person-year versus 0.16/person-year (p = 0.006).

Husain S, et al. AJT 2006;6: 3008-3016

Comparison of the rate of elevated liver enzymes (≥3 times upper limit of normal) between targeted prophylaxis group and voriconazole group

	Voriconazole prophylaxis group %(n) (n = 65)	Targeted prophylaxis group %(n) (n = 27)	p values
GGTP ¹	60% (39/65)	41% (11/27)	0.07
ALT ²	45% (29/65)	15% (4/27)	0.005
AST ³	37% (25/65)	15% (4/27)	0.02

Husain S, et al. AJT 2006;6: 3008-3016

Drug interactions with voriconazole

Type of interaction, drug	Recommendation	
Decreases voriconazole levels		
Carbamazepine	Contraindicated	
Long-acting barbiturates	Contraindicated	
Rifampin	Contraindicated	
Levels increased by voriconazole		
Astemizole	Contraindicated	
Cisapride	Contraindicated	
Cyclosporine	Reduce dosage by one-half and monitor levels	
Ergot alkaloids	Contraindicated	
Omeprazole	Reduce dosage by one-half	
Quinidine	Contraindicated	
Sirolimus	Contraindicated	
Tacrolimus	Reduce dosage to one-third of its original level and monitor levels	
Terfenadine	Contraindicated	
Warfarin	Monitor prothrombin time	
Decreases voriconazole levels and increases other drug levels		
Rifabutin	Contraindicated	
Phenytoin	Double voriconazole dosage and monitor for increased phenytoin levels	
Levels likely increased by voriconazole: sulfonylureas, statins, vinca alka- loids, calcium channel blockers, benzodiazepines	Monitor effects of drug and consider decreasing dosage when voriconazole is added	

VORICONAZOLE BLOOD LEVELS EFFICACY AND TOXICITY

EFFI	САСУ	то	XICITY
< 1 ug/Ml	7/13 (54%)	< 5.5 ug/mL	CNS: 0/36 (0%) Liver: 3/36 (8%)
>1 ug/mL	34/39 (88%)	> 5.5 ug/mL	CNS: 5/16 (31%) Liver: 3/16 (19%)

Pascual et al, Clin Infect Dis 2008;46:201-211

Risk Factors for Zygomycosis In Solid Organ Transplant (SOT) Recipients: A Prospective, Case-Controlled, Multicenter, International Study.

- In a multivariate cox regression model:
- diabetes (HR 2.6,p=.02) was independently associated with zygomycosis;
- the association of prior azole/caspofungin use approached significance (HR 3.3, p=.053)
- retransplantation (HR 1.91,p=.09) and baseline renal failure (HR 1.93, p=.10) were not significantly associated with zygomycosis.
- Conclusions: Whether use of newer antifungal agents portends a risk beyond that posed by traditional risk factors such as diabetes, remains to be determined.

Targeted prophylaxis

Treatment of a subgroup of recipients determined to be high risk as defined by clinical, laboratory, or epidemiological characteristics

Specific Risk Factors for IFI in SOT

LIVER

- Pretransplant fulminant hepatic failure
- Primary allograft failure or severe dysfunction
- Retransplantation (acute retransplantation); delayed or repeat transplantation for chronic graft dysfunction should be assessed individually
- Renal failure and hemodialysis
- High transfusion requirement
- Use of OKT3 monoclonal antibody preparations
- 'UNOS status 1, 2a'.

LUNG

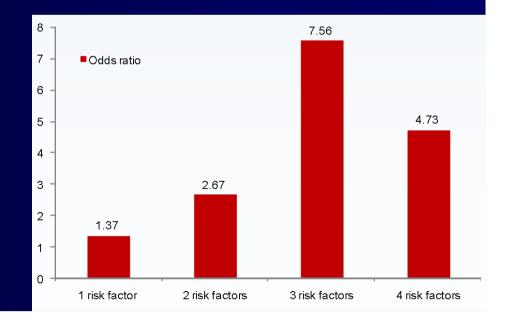
- Hyperacute rejection, acute graft failure, or severe dysfunction.
- Severe lung dysfunction from lung injury or reimplantation response; in this context, enhanced immunosuppression and mechanical ventilation increase the risks of IFI.
- Bronchial ischemic or poorly vascularized bronchial segments especially with mucosal sloughing or necrosis.
- Early recovery of *Aspergillus* on respiratory culture.
- Anastomotic dehiscence.
- CMV infection.
- Retransplantation (early reexploration).

Invasive Fungal Infections in Low-Risk Liver Transplant Recipients: A Multi-Center Prospective Observational Study

Patients were considered <u>low risk</u> if they had ≤ 1 of the following conditions:

- Choledocho-jejunostomy anastomosis;
- Retransplantation;
- Intra-operative administration of
 <u>></u> 40 units of blood products, or return to the operating room for intraabdominal bleeding;
- Return to the operating room for anastomotic leak or vascular insufficiency;
- Preoperative serum creatinine of 2 mg/dl or need for any form of dialysis within 48 h prior to OLT;
- Perioperative candida colonization

Liver transplant recipients at low risk for IFI can be identified utilizing pre-determined criteria, and post-tx antifungal prophylaxis can be routinely withheld in these patients.


Pappas PG et al. Am J Transplan 2006; 6: 386-391

Identifying a Targeted Population at High Risk for Infections after Liver Transplantation in the MELD Era

"High-risk" factors for infections were defined as:

- MELD >30
- ICU stay >48 hrs prior to transplant
- Intraoperative transfusion >15 units
- Retransplantation
- Posttransplant dialysis or reoperation

The odds ratio for a posttransplant major infection were 1.37, 2.67, 7.56, and 4.73 in recipients with 1, 2, 3, and 4 high-risk factors, respectively (x2 for trend, p<.001)

In univariate analysis, all pre-definded high-risk factors were significantly associated with infections within 90 days posttransplant, and so was age at transplant

Factors	Reference	OR (95% CI)	P value
Components of high-risk factor			
Retransplant	No retransplant	3.36 (1.19-9.48)	.022
Posttransplant dialysis	No dialysis	2.45 (1.02-5.89)	.045
Posttransplant reoperation	No posttransplant reoperation	2.45 (1.22-4.90)	.011
ICU stay >48hr prior to transplant	ICU stay <u><</u> 48hr prior to transplant	4.51 (1.69-11.98)	.002
Intraoperative transfusion ≥15 units	Intraoperative transfusion <15 units	2.02 (1.03-3.96)	.039
MELD score >30	MELD score <30	3.48 (1.65-7.32)	.001
Age at transplant	Continuous variable	1.09 (1.03-1.16)	.001
Donor age	Continuous variable	1.00 (.98-1.02)	.638
Hepatocelluar carcinoma	No hepatocelluar carcinoma	.87 (.44-1.75)	.717
CMV R-D+	No CMV R-D+	.99 (.49-2.04)	.996
CMV infection	No CMV infection	1.14 (.63-2.05)	.662
Current era	Prior era	.84 (.44-1.63)	.623

Hsin-YunSun, et al.ATC 2009

A bedside scoring system ("Candida score") for early antifungal treatment in nonneutropenic critically ill patients with *Candida* colonization* Cristóbal León, et al. Crit Care Med 2006; 34:730-737

Risk factor	Candida score
Parenteral nutrition	+0.908
Surgery	+0.997
Multifocal colonization	+1.112
Severe sepsis	+2.038

Conclusions: In a large cohort of nonneutropenic critically ill patients in whom Candida colonization was prospectively assessed, <u>a "Candida score" >2.5</u> accurately selected patients who would benefit from early antifungal treatment. Usefulness of the "*Candida* score" for discriminating between *Candida* colonization and invasive candidiasis in non-neutropenic critically ill patients: A prospective multicenter study

	Colonized and Invasive Candidiasis (No. Patients)	Invasive Candidiasis No. (%)	Patients to be Included ^a
<i>Candida</i> score <3	565	13 (2.3)	8.7
Candida score ≥ 3	327	45 (13.8)	
Colonization index < 0.5	411	16 (3.9)	20.8
Colonization index ≥ 0.5	481	42 (8.7)	

^{*a*}Number of patients with *Candida* score \geq 3 to predict one infection attributable to the increase of the score.

Conclusions: In this cohort of colonized patients
 (834/1107) staying >7 days, with a CS <3 and not
 receiving antifungal treatment, the rate of IC was <5%.
 Therefore, IC is highly improbable if a Candida-colonized
 non-neutropenic critically ill patient has a CS <3.

Leon C. et al. Crit Care Med 2009; 37:1624 -1633

Risk factors for infections caused by Aspergillus spp., recommended agent for prophylaxis and duration

Organ	Risk factors	Antifungal prophylaxis	Duration
Liver*			
	Pre-transplant fulminant hepatic failure	Lipid formulation of amphotericin B 2.5-5 mg/kg/day	4 weeks
	Primary allograft failure	Or	or until resolution of risk factors
	Retransplantation	Voriconazole 400 mg/day	
	Requirement of renal replacement therapy	La note presidente en la production de la construction de la production de la production de la production de la	
	High transfusion requirements		
	Use of monoclonal antibodies		
Lung			
	Airway ischemia	Inhaled amphotericin B 6-30 mg/day	2 weeks to lifelong
	Reperfusion injury	Or	
	Receipt of single lung transplant	Voriconazole 400 mg/day	
	Presence of bronchial stents	Or	
	Acquired hypogammaglobulinemia Aspergillus colonization	Itraconazole 400 mg/day	

*These are risk factors for *Candida* as well, however, prophylaxis with an agent without anti-*Aspergillus* activity is not appropriate. Antifungal prophylaxis may be warranted whenever more than one risk factor is present.

Silveira F, et al Medical Mycology 2007;45:305-320

Prophylaxis With Caspofungin for Invasive Fungal Infections in High-Risk Liver Transplant Recipients

One of these criteria (major criteria):

- a. Redo caused by severe dysfunction of a previous graft,
- b. need for any renal replacement therapy, including dialysis or venous hemofiltration within a maximum time period of 30 days,
- c. prior history of fulminant hepatitis leading to LT, or

Two of these criteria (minor criteria):

- a. a. prior postoperative renal failure (defined as creatinine clearance <50 mL/min) within a maximum time period of 30 days,
- b. transfusion intraoperatively of ≥40 units cellular blood products
- c. presence of a choledocojejunostomy,
- d. ≥ two positive clinical site surveillance culture (nasal, pharyngeal, or rectal) for *Candida* from 48 hr before to 48 hr after LT,
- e. reoperation (laparotomy) within 5 days of LT.

Fortun J., et al. Transplantation 2009; 87: 424-435

Prophylaxis With Caspofungin for Invasive Fungal Infections in High-Risk Liver Transplant Recipients Efficacy and safety of caspofungin prophylaxis Event No. (%) patients 2/71 (2.8%) IFI Surgical infection by *Mucor spp, 41 d after* ending a course of 21 d of caspofungin Surgical infection by Candida albicans, 19 d 1 after ending a course of 21 d of caspofungin Favorable response (MITT analysis) (primary 63/71 (88.7%) objective) Favorable response (EP analysis) (secondary objective) Absence of invasive Fungal infection (IFI) 54/56 (96.4%) Absence of invasive aspergillosis (IA) 56/56 (100%) • Fortun J., et al. Transplantation 2009; 87: 424-435

Preemptive therapy

Based on an accurate detection method to identify patients at risk for disease as an essential component of this strategy

Current diagnostic methods

<u>Classic</u>

- Microscopy
- Histopathology
- Culture
- Radiographic (HR-CT)

Biomarkers

- Cell wall components
 - Galactomannan
 - Aspergillus EIA
 - 1,3-B-D-Glucan
 - Limulus lysate
- Nucleic acid
 - PCR

Galctomannan as a Marker for Aspergillosis Results from a meta-analysis

- 27 studies from 1996 2005
 - Overall sensitivity 71%, specificty 89%
 - Assay performance varied by patient population

Population	% Sensitivity	% Specificity
Hematologic malignancy	70	92
Bone marrow transplant	82	86
Pediatric (hema malign /BMT)	89	85
Solid organ transplant	22	84

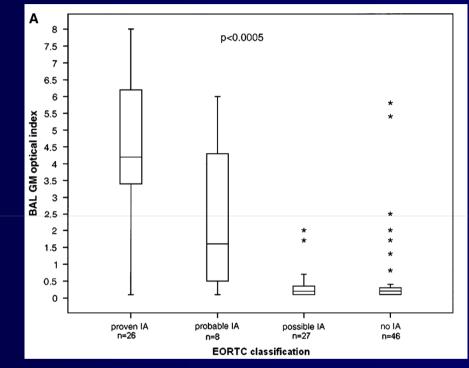
Pfeiffer CD, et al. CID 2006;42:1417-1427

Utility of Galactomannan Detection in BAL Samples

# pt	Sens	Spec	PPV	NPV
160	(%)	(%)	(%)	(%)
Serum	47	93	73	82
BAL	85	100	100	88

TABLE 4. Sensitivity relative to BAL fluid culture positivity for Aspergillus species^e

	1	BAL fluid culture positive BAL fluid culture		3AL fluid culture ne	gative		
Test	No.	Sensitivity (%)	95% CI	No.	Sensitivity (%)	95% CI	P value ^b
GM EIA with index of 0.5	27	89	71-98	22	59	36-79	0.02
GM EIA with index of 1.0	27	78	58-91	22	41	21-64	0.02
qPCR	24	96	79-100	22	36	17-59	< 0.001
qPCR or GM EIA with index of 0.5	23	100	85-100	22	64	41-83	0.001


* Among patients with proven or probable aspergillosis. ^b P value from Fisher's exact test comparing sensitivities between patients with BAL fluid cultures that revealed growth of Appengillus species (positive) and those with culture-negative BAL fluid cultures.

> Becker et al. Br J Haematol 2003; 121: 448 Copyright 2008 Joint ICAAC/IDSA Annual Meeting Musher et al. J Clin Microbiol 2004: 42(12): 5517-22

Galactomannan in Bronchoalveolar Lavage Fluid A Tool for Diagnosing Aspergillosis in Intensive Care Unit Patients

TABLE 3. GALACTOMANNAN AND CULTURE RESULTS IN72 PATHOLOGY-CONTROLLED CASES*

	No. of Patients		
	Invasive Aspergillosis (n = 26)	No Invasive Aspergillosis [†] (n = 46)	Total
Serum galactomannan, no. [‡]			
Positive	11	3	14
Negative	15	43	58
Total	26	46	72
BAL galactomannan, no. [‡]			
Positive	23	6	29
Negative	3	40	43
Total	26	46	72
BAL culture, direct examination, no.§			
Positive (%)	15 (58)	14 (30)	29
Negative (%)	11 (42)	32 (70)	43
Total	26	46	72

 The use of galactomannan in bronchoalveolar lavage fluid as a means of establishing early diagnosis of invasive aspergillosis in critically ill patients at risk is promising.

Meersseman W., et al. Am J Respir Crit Care Med 2008;177:27-34,

(1-3)β-D-Glucan as a marker for invasive fungal infection

<u>Cell wall component of yeast</u> <u>and moulds</u>

- *Candida* spp.
- Acremonium
- Aspergillus spp.
- Coccidioides immitis
- Fusarium spp.
- Histoplasma capsulatum
- Trichosporon spp.
- Sporothrix schenckii
- Saccaromyces cerevisiae
- Penumocystis jiroveci

Fungitell package insert; Odabasi et al. Medical Mycology 2006;44:267-272

Exceptions

- Cryptococcus
- Zygomycetes
- Scedosporium

	(1→	$(1 \rightarrow 3)\beta$ -D-Glucan to				
	Detect Invasi	ive Fung	al Infe	ection	n (IFI)	
2	 6 US Centers 					
	170 Contro	ols (mostly	healthy)		
	163 Prove	n/Probable	IFIS			
	111 Candida, 22 Aspergillus, 3 Fusarium, 3 Zygomycetes, 12 Cryptococcus, 12 Others Serum collected within 72 hours of diagnosis					
	Cutoff (pg/ml)	% SN	% SP	PPV	NPV	
		% SN 70	% SP 87	PPV 84	NPV 75	

* Proven candidiasis 81% SN at 60 pg/ml cut-off

Ostrosky-Zeichner et al. CID 2005;41(5):654-659.

PCR for the diagnosis of invasive fungal infections

Aspergillus meta-analysis 2000 – 2008 — 16 studies assessing serial blood collection (>10,000 samples from 1618 patients)

- Lack of standardization in PCR methods is a Major problem
- Contamination of collection devices, reagents, disposables

Variable	Number
Sample type	3
Volumes tested	200μ L to 10 mL
Cell wall disruption	5
DNA extractions	3
Target genes	4
PCR methods	5

Mengoli et al. Lancet Infect Dis 2009; Harrison et al. ICAAC 2008

Conclusions

- Recent studies have demonstrated that universal prophylaxis probably is not the best available strategy and it is associated to an increase of toxicity, is not cost-effective, and may have an ecological impact in selection of resistant strains.
- The administration of a targeted prophylaxis according to the presence of high risk factors for IFI has demonstrated to be a more efficient strategy
- The transplant community should conduct welldesigned clinical trials to provide solid evidence in support of best practice standards for the diagnosis, management and prevention of fungal infections.