

Comparison of the two sequenced clinical isolates of *A. fumigatus*

Natalie Fedorova J. Craig Venter Institute (JCVI/TIGR) Rockville, MD

J. Craig Venter

Outline

MERCK

- Introduction: history of sequenced strains
- Continuous variation
- Discontinuous variation
- Vegetative incompatibility

J. Craig Venter

Goal of Project

- examine the extent of diversity at the whole-genome level within A. fumigatus using the 2 sequenced strains (Af293 and CEA10)
- compare it to diversity within and between other species of the genus Aspergillus :
 - 2 sequenced A. niger strains
 - A. flavus and A. oryzae
 - A. fumigatus and N. fischeri
- Identify differential genetic traits associated with phenotypic differences in *A. fumigatus* isolates

J. Craig Venter

Aspergillus/Penicillium Tree

What is Molecular Diversity?

- DNA sequence variability
- Discontinuous variability:
 - Unique genes
 - Mating types
 - Vegetative compatibility groups
 - Copy number polymorphism
 - Sources: recombination, duplication, gene flow
- Continuous variability:
 - Nucleotide sequence divergence
 - Sources: mutation
 - Molecular markers: SNPs, restriction fragment length polymorphisms, SSRs (microsatellites)

J. Craig Venter

Methods to Study Genetic Diversity

- Molecular typing: MLST (multilocus sequence typing)
- Microsatellites (tandem repeats 2-6 nt)
- High density SNP allele arrays
- Whole genome sequencing (WGS)
- Array comparative genomic hybridization (aCGH)

J. Craig Venter

A. fumigatus Af293

- Isolated by David Denning in 1993 from a lung of a neutropenic patient who died from invasive aspergillosis
- Sequenced and annotated by TIGR/JCVI in 2005
- Used as a reference strain in CGH with other clinical isolates:
 - Af294 (France)
 - Af71 (USA)

J. Craig Venter

A. fumigatus "CEA10"

- CBS 14489/"Dal"/CEA10: came from JP Latge's lab (from an IA patient, Mr. Dalage) renamed CEA10 by Christophe d'Enfert
- Given to the Elitra fungal team, which later moved to Merck
- Sequenced by Celera and annotated by TIGR/JCVI

J. Craig Venter

PyrG tree reveals the presence of A. niger pyrG in "CEA10"

J. Craig Venter

"CEA10" = *A. fumigatus* A1163

- Horizontal gene transfer of A. niger pyrG into "CEA10"
- Or strain mix-up prior to sequencing ?
- "CEA10" is FGSC A1163: a derivative of *A. fumigatus* CEA17 (a uracil auxotroph of CEA10) converted to *pyrG*+ via the ectopic insertion of *A. niger pyrG*

J. Craig Venter

Preliminary Studies: Resistance to Antifungals

J. Craig Venter

Outline

MERCK

- Introduction: history of sequenced strains
- Continuous variation
- Discontinuous variation
- Vegetative incompatibility

J. Craig Venter

Continuous Divergence: Intraspecific Sequence Identity

			-	
Species	A.fumigatus Af293/A1163	<i>A.niger</i> DSM/JGI	A.flavus/ A.oryzae	A.fumigatus/ N.fischeri
Genome vs. genome	99.80%	99.30%	99.50%	92.40%
CDS vs. genome	99.60%	99.10%	99.10%	94.30%
Protein vs. protein	99.50%	96.70%	98.00%	93.40%

The lowest level of sequence divergence

INSTITUTE

J. Craig Venter

Rokas et al., Studies in Mycology, 2007

Continuous Divergence: Genes with SNPs

% CDS with	A.fumigatus	A.niger	A.flavus/	A.fumigatus/		
SNPs	Af293/A1163	DSM/JGI	A.oryzae	N.fischeri		
nonsynononym.	41.27%	54.31%	61.45%	98.36%		
only synonymous	28.81%	10.71%	15.72%	1.64%		
total	57.86%	65.01%	77.18%	99.98%		
The lowest level of sequence divergence						

The lowest level of sequence divergence

J. Craig Venter

Genes with Nonsynonymous SNPs Have a Subtelomeric Bias

Distance to the telomere

J. Craig Venter

Outline

MERCK

- Introduction: history of sequenced strains
- Continuous variation
- Discontinuous variation
- Vegetative incompatibility

J. Craig Venter

Discontinuous Diversity: Isolate-specific Regions

Percent of Genome

J. Craig Venter

INSTITUTE

Antonis Rokas et al., Studies in Mycology, 2008

Discontinuous Diversity: Isolate-specific Genes

J. Craig Venter

INSTITUTE

Rokas et al., Studies in Mycology, 2008

Biological Roles of *A. fumigatus* Af293-specific Genes

- Unknown
- Metabolism
- Secondary metabolism (2 clusters)
- Transport

J. Craig Venter

Outline

MERCK

- Introduction: history of sequenced strains
- Continuous variation
- Discontinuous variation
- Vegetative incompatibility

J. Craig Venter

Heterokaryon (Vegetative) Incompatibility

- Programmed cell death reaction in filamentous fungi
- Occurs during hyphal fusion between 2 genetically incompatible individuals from different VCGs
- Controlled by highly polymorphic het loci
- Characterized by trans-species polymorphism

J. Craig Venter

I N S T I T U T E

Highly Divergent Genes

AFUA_2G17420 Genomic Neighborhood

J. Craig Venter

AFUA_2G00910 Genomic Neighborhood

AFUA_6G07030 and *rosA* Genomic Neighborhood

J. Craig Venter

RosA/NosA Tree

Allelic Polymorphism among 22 *A. fumigatus* Isolates

Gene/ Isolate	AFUA_2G00910	AFUA_2G17420	RosA	Isolation site
WSA-419	1	1	1	Environmental, USA
WSA-446	1	1	1	Clinical, USA
WSA-621	1	1	1	Clinical, USA
WSA-622	1	2	1	Environmental, USA
Af293	2	2	1	Clinical, UK
A1163	1	1	2	Clinical, France
WSA-1195	1	1	2	Clinical, USA
WSA-270	1	1	2	Environmental, India
WSA-449	1	1	2	Clinical, USA
WSA-623	2	1	2	Clinical, USA
WSA-271	2	1	3	Environmental, USA
L Craig Ven	raig Venter Different VCGs		The same VCG	

Conclusions

- Isolate specific genes represent 2% of the A. fumigatus genome and ~60% genes contain SNPs
- Diversity within A. fumigatus (different VCGs) is similar to that within A. niger and A. oryzae/flavus
- Phenotypic differences can not be easily associated with either continuous or discontinuous divergence
- A. fumigatus has at least 3 het loci with 2 alleles
- CGH arrays must include the A. fumigatus "pan-genome" including all het alleles and unique genes

J. Craig Venter

I N S T I T U T E

Acknowledgements

JCVI (TIGR)

William Nierman

Jennifer Wortman

Lis Caler

Vinita Joardar

Rama Maiti

Paolo Amedeo

PNNL

Scott Baker

Vanderbilt University

Antonis Rokas

U. Of Arizona

Peter Cotty

Universidade de São Paulo

Gustavo Goldman

NCSU

Gary Payne

U. of Manchester

David Denning

Merck

Bo Jiang

J. Craig Venter

Thank you!

J. Craig Venter