Treatment of invasive aspergillosis

David W. Denning University Hospital of South Manchester The University of Manchester

Treatment

Invasive aspergillosis

Table 2. Summary of recommendations for the treatment of aspergillosis.

	Therapy ^a			
Condition	Primary	Alternative ^b		
Invasive pulmonary aspergillosis	Voriconazole (6 mg/kg IV every 12 h for 1 day, followed by 4 mg/kg IV every 12 h; oral dosage is 200 mg every 12 h)	L-AMB (3–5 mg/kg/day IV), ABLC (5 mg/ kg/day IV), caspofungin (70 mg day 1 IV and 50 mg/day IV thereafter), micafun- gin (IV 100–150 mg/day; dose not esta- blished ^c), posaconazole (200 mg QID initially, then 400 mg BID PO after sta- bilization of disease ^d), itraconazole (dos- age depends upon formulation) ^e		

IDSA guidelines. Walsh et al. Clin Infect Dis 2008;46:327

Invasive aspergillosis

There are few randomized trials on the treatment of invasive aspergillosis. The largest randomized controlled trial demonstrates that voriconazole is superior to deoxycholate amphotericin B (D-AMB) as primary treatment for invasive aspergillosis. Voriconazole is recommended for the primary treatment of invasive aspergillosis in most patients (A-I). Although invasive

Why most and not all?

IDSA guidelines. Walsh et al. Clin Infect Dis 2008;46:327

August 1994 The American Journal of Medicine[®] Volume 97 135

NIAID Mycoses Study Group Multicenter Trial of Oral Itraconazole Therapy for Invasive Aspergillosis

David W. Denning, MBBS, San Jose, California, Jeanette Y. Lee, PhD, Birmingham, Alabama, John S. Hostetler, MD, San Jose California, Peter Pappas, MD, Birmingham, Alabama

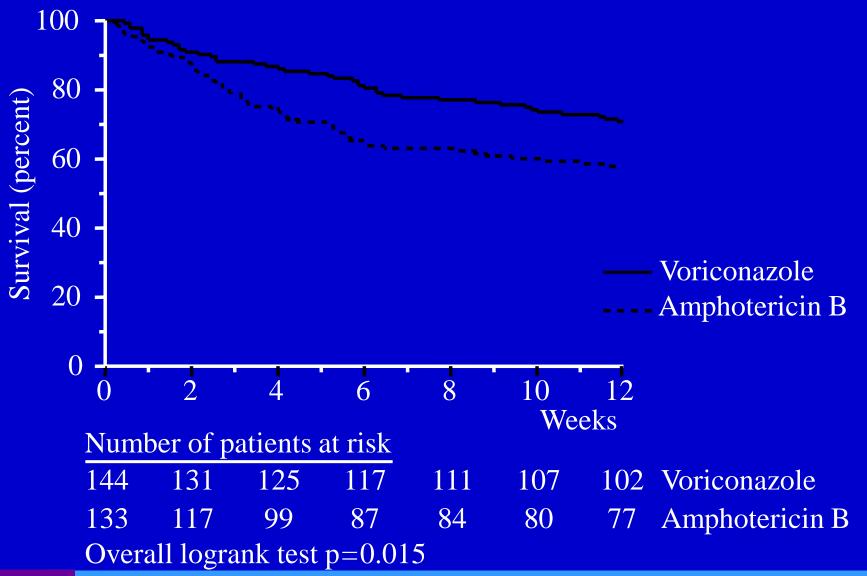
Open study of 600 mg/day for 4 d, then 400 mg/d. Treatment extended for <u>></u>97 weeks, median 46

	<u>12 weeks</u>	End of Treatme		
Complete	5% 26%	26% 13%		
Partial	26%	13%		
Stable	34%	4%		
Failure	32%	56% (30% other causes)		
Deaths		31%		

nt

Randomised study of invasive aspergillosis with voriconazole versus amphotericin B

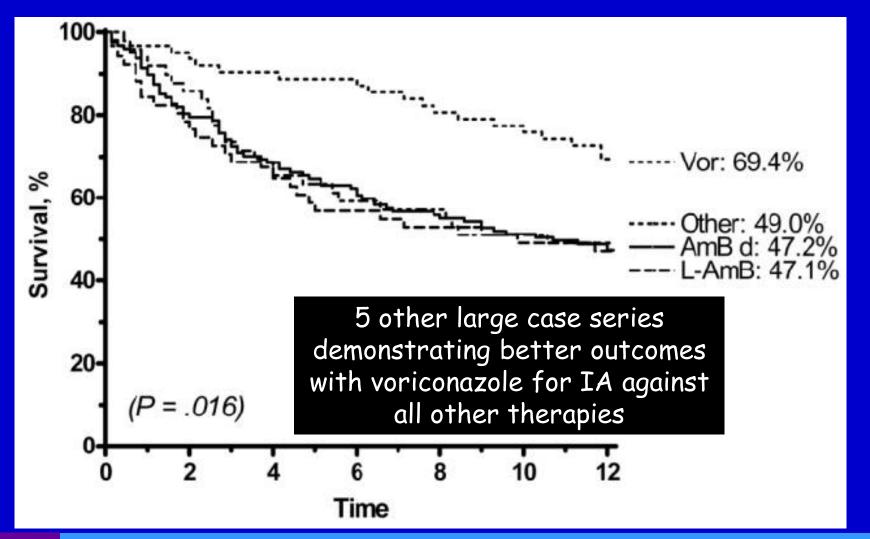
391 pts received either


Voriconazole 4 mg/d BID (after loading) for 12wks (or OLAT)
 or 2) AmB 1.0 mg/kg/d for 12wks (or OLAT)

mITT analysis
Success (%) Severe AEs (%) Renal tox (%) Died (all) (%)
Vori
$$53$$

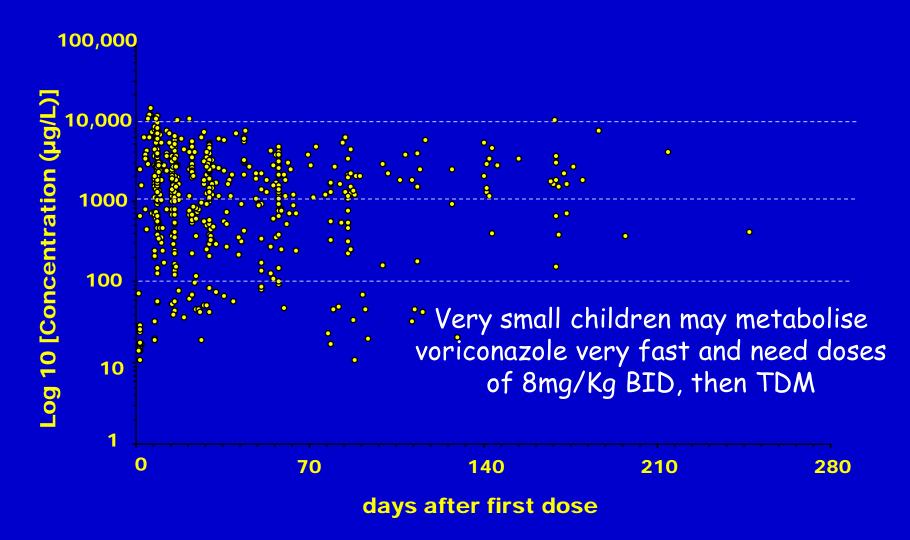
 21%
AmB 32
 24
 10
 42
 13%
 10
 42

Herbrecht, Denning et al, NEJM 2002;347:408


Survival after primary Rx with amphotericin B or voriconazole

MANCHESTER

Herbrecht, Denning et al, NEJM 2002;347:408


Impact of voriconazole in real life - France

MANCHESTER 1824

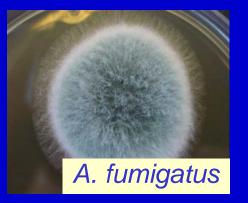
Nivoix et al, Clin Infect Dis 2008;47:1176

Random voriconazole concentrations in adults receiving 3mg/Kg BID



Data from Denning et al, Clin Infect Dis 2002;34:563

Intrinsic and acquired resistance among the *Aspergilli*


Amphotericin B resistance/insensitivity

Azole resistance

Only itraconazole resistance

Randomised study of invasive aspergillosis with Amphocil versus amphotericin B

174 pts received either

1) Amphocil 6 mg/d for >2wks after symptoms gone

or 2) AmB 1.0 - 1.5 mg/kg/d >2wks after symptoms gone 70/174 (40%) in high risk (HSCT, liver Tx, AIDS, brain)

ITT analysis

Amphocil	Success (%)	Tox (%)	Renal tox (%)	Died (due to IA)(%)
	13	83	23	59 (22)
AmB	15	83	41	67 (20)

Randomised study of invasive aspergillosis with 2 doses of AmBisome

339 pts randomised to receive either

L-AmB 3 mg/d for 2+wks (169 randomised; 107 in MITT)
 L-AmB 10 mg/d for 2+wks (162 randomised; 94 in MITT)
 44/201 (22%) high risk (HSCT, AIDS)

MITT analysis

L-AmB 3	CR + PR	Stop Rx	Renal tox	Died
	50%	20%	14%	28%
L-AmB 10	46%	32%	31%	41%

Cornely et al, Clin Infect Dis 2007;44:1289

₽

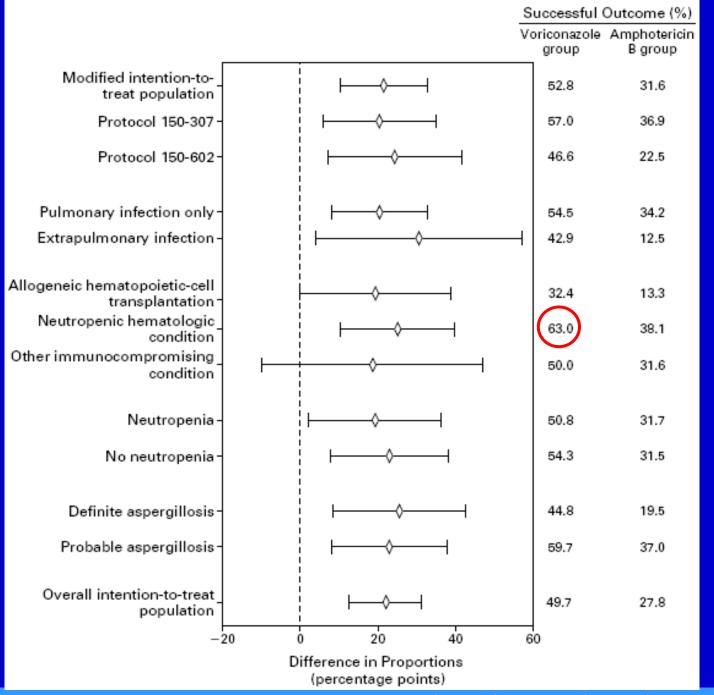
Micafungin for invasive aspergillosis

Table 3 Efficacy	at end of therapy				
	Primary (%)		Refractory/toxic	ity failure ^a (%)	Total (%)
	Micafungin in combination $(n = 17)$	Micafungin alone (n = 12)	Micafungin in combination (<i>n</i> = 174)	Micafungin alone (n = 22)	(N = 225)
Complete response	2 (11.8)	0	13 (7.5)	3 (13.6)	18 (8.0)
Partial response	3 (17.6)	6 (50.0)	47 (27.0)	6 (27.3)	62 (27.6)
Favorable response	5 (29.4)	6 (50.0)	60 (34.5)	9 (40.9)	80 (35.6)
Stabilization	3 (17.6)	2 (16.7)	17 (9.8)	3 (13.6)	25 (11.1)
Progression	9 (52.9)	4 (33.3)	97 (55.7)	10 (45.5)	120 (53.3)
Not successful	12 (70.6)	6 (50)	114 (65.5)	13(59.1)	145 (64.4)

^a Four patients who had failed previous therapy due to toxicities are included in the micafungin-alone group.

Denning et al, J Infect 2006;53:337.

Open study of invasive aspergillosis with caspofungin as primary therapy


61 pts with chemotherapy or auto HSCT received Caspofungin 70 then 50mg IV daily

MANCHESTER

	MITT p	MITT population $(N=61)$			
Response	n	% (95% CI)			
Complete	1	2 (0-9)	1228		
Partial	19	31 (20-44)	33/0	respons	e rate
Stable disease	9	15 (7-26)			
Disease progression	31	51 (38-64)			
Not evaluable ^a	1	2 (0-9)			
^a Patient refused treatment.					
Neutropenia at enrolment (no	t assessable in one	case)			
no			5/9 (56)	0.14	
yes		1.	5/51 (29)		

Survival by day 84 = 33/61(94%)

Viscoli et al, JAC 2009;64:1274

Herbrecht at al, New Engl J Med 2002:347:408-15

Voriconazole versus amphotericin B [Spectrum/activity]

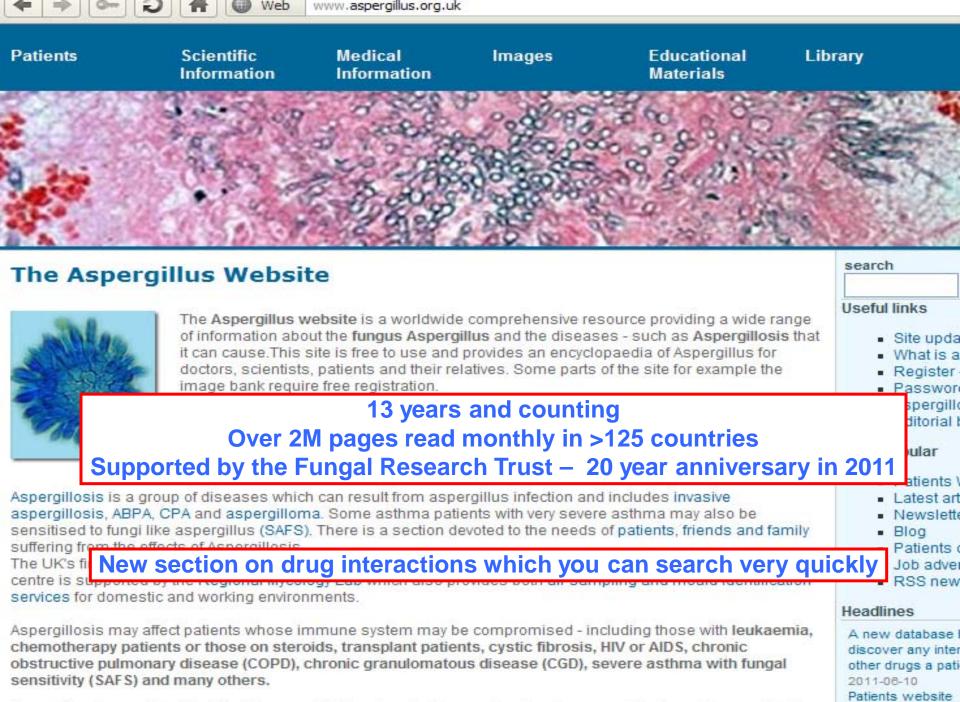
Favours voriconazoleMuch more active for IA (~20% better)Active against A. terreusActive against A. nidulansMore active A. flavusActive against S. apiospermum

29

Voriconazole versus echinocandin [Spectrum/activity]

Favours voriconazoleMuch more active for IA (~20% better)Active against A. terreusActive against A. terreusActive against A. nidulansMore active A. flavusActive against S. apiospermum

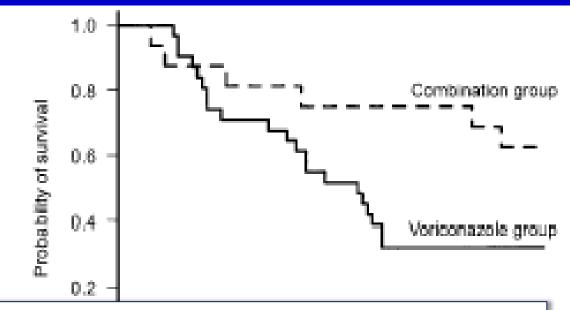
Favours micafungin/caspofungin Azole resistant *A. fumigatus*



Cytochrome P450 interactions

	Fluc	Itra	Posa	Vori
Inhibitor				
2 C 19	+			+++
2C9	++	+		++
3A4	++	+++	+++	++
Substrate				
2 C 19				+++
2C9				+
3A4		+++		+

Dodds Ashley & Alexander. Drugs Today 2006;41:393.



Aspergillus does not solely affect humans; birds and animals can also develop aspergillosis, and some plant

Combination therapy (voriconazole + caspofungin)

Retrospective AmB failures Most HSCT 30/47 proven IA

Multivariate analysis P=0.008 for combination and survival

Combination therapy may be useful for a short time early during voriconazole treatment to allow confirmation of adequate voriconazole concentrations, especially in children.

	Days since diagnosis of IA			
Voriconazole group, no. of patients	31	22	10	10
 Combination group, no. of patients 	16	13	12	10

Marr et al, Clin Infect Dis 2004:39:797

Arguments for <u>not</u> using voriconazole?

- 1. Amphotericin B is a broader spectrum agent No
- 2. AmBisome is equivalent to voriconazole in IA No
- 3. Patient was on itraconazole prophylaxis No
- 4. The patient has cerebral aspergillosis No (beware interactions, especially phenytoin)
- 5. The patient might have azole resistant Aspergillus maybe
- 6. Major drug interactions yes sometimes
- 7. Renal failure only if IV therapy needed for any duration
- 8. My patient is a young child and I am worried about blood levels - yes use 9mg/Kg BD (200mg BD orally) and consider combination therapy with an echinocandin and measure levels

Choice of antifungal for invasive aspergillosis

Priority sequence

- Voriconazole (unless drug interaction)
- Micafungin/caspofungin (if not neutropenic)
 OR
- AmBisome <u>3mg/Kg</u> (if not 'nephro-critical')
- 3. Posaconazole (oral only, if no drug interactions)
- 4. Itraconazole

When not to use voriconazole as primary therapy?

Absolute contraindications

- Drug interactions (ie rifampicin, carbamazepine, phenytoin etc)
- Voriconazole used as prophylaxis (but not itraconazole or posaconazole)
- Resistance to voriconazole (esp zygomycosis, A. lentulus or azole resistance in A. fumigatus)

Relative contraindications

- Renal failure (IV only)
- Young children (need higher dose ?+ other agent)
- Severe hepatic dysfunction
- Interacting drugs (ie sirolimus)

Conclusions

- Voriconazole is the treatment of choice for invasive aspergillosis
- For those with toxicity, significant drug interactions or azole resistance, an echinocandin or lipid AmB is appropriate
- Current treatments are partially successful but more oral therapies are needed
- Isolates of Aspergillus should be susceptibility tested, if treatment given

