
Diagnosis of Fungemia using Molecular Methods

Analy Salles A. Melo

Laboratório Especial de Micologia UNIFESP

Sepsis Diagnosis

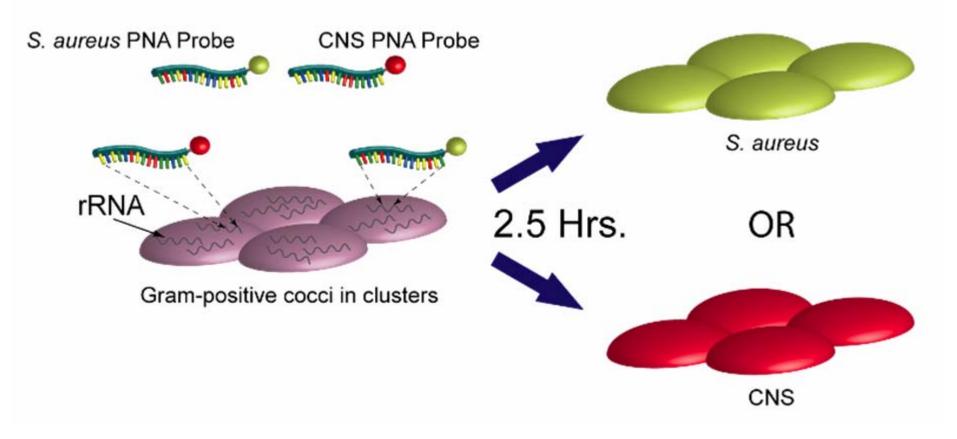
- Blood culture, the gold standard in diagnosis of bacterial and fungal BSI, typically becomes positive 8-36 h after sampling.
- The therapy is based on Gram-stain characteristics.
- A more precise pathogen identification and susceptibility profile is not available until up to 24-48 h (minimum).
- For a significant number of patients with clinically apparent FUNGAL sepsis the blood culture is negative, making difficult the optimal antimicrobial therapy

Molecular Methods for Sepsis Diagnosis

- Advantages on using molecular methods as compared with the traditional culture
 - Phenotypic changes do not affect the results, as it can occure in cultures
 - Species can be accurately identified
 - Short time for diagnosis and identification
 - Most of the molecular methods present sensitivity and specificity higher than culture

Molecular Methods for Sepsis Diagnosis

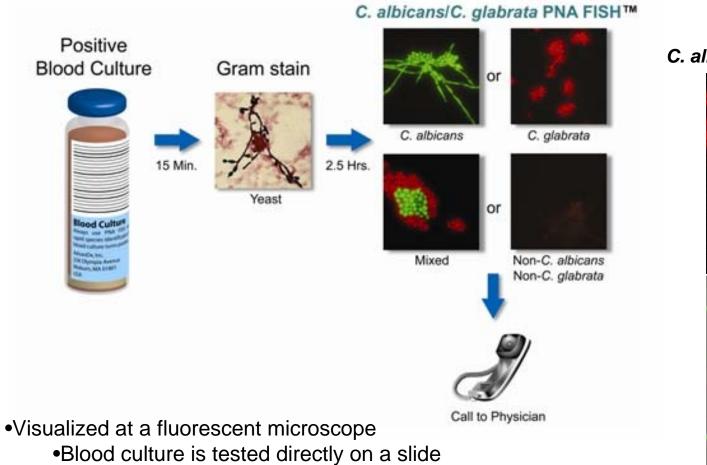
- Method available in Brazil cleared by ANVISA
 - Septi*Fast* (Roche)
- Method submitted to ANVISA clearance
 - PNA-FISH (AdvanDx, USA)
- Methods under validation for clinical samples by the manufacturers
 - Luminex (fungi)
 - Ibis technology (bacteria and fungi)


PNA FISH test

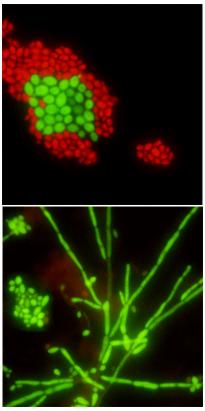
(AdvanDx, Inc.Woburn, MA,USA)

(Peptide Nucleic Acid Fluorescence In Situ Hybridization)

Short time for visualization

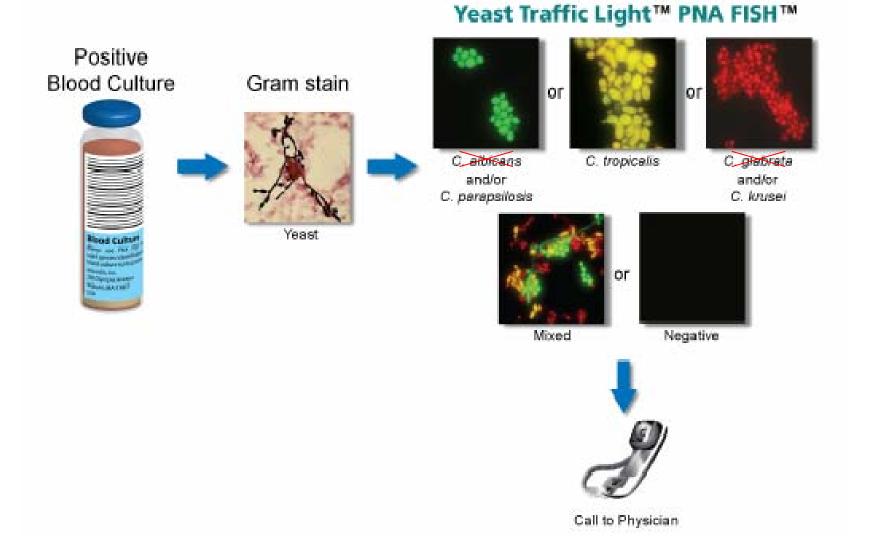


•Species identification


PNA FISH test

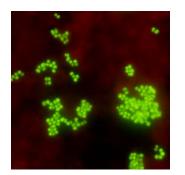
(AdvanDx, Inc.Woburn, MA,USA)

PNA FISH C. albicans and C. glabrata

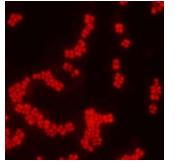


PNA FISH C. albicans

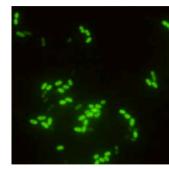
PNA FISH test (AdvanDx, Inc.Woburn, MA,USA)

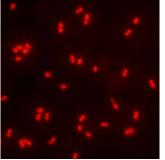


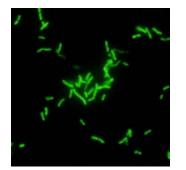
KT005

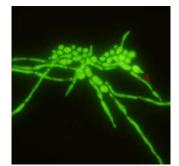

KT003

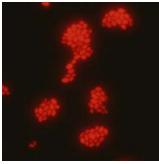
KT007

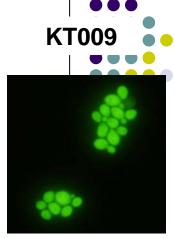

KT006

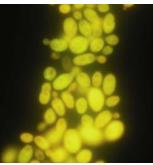

S. aureus

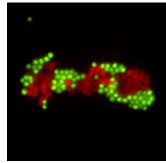

Coag-Negative Staph

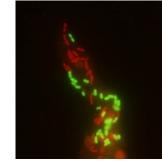

E. faecalis

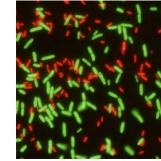

Other enterococci


E. coli*

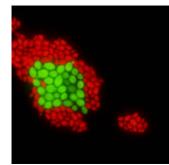

C. albicans

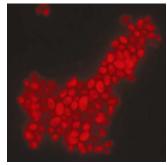

C. glabrata


C. albicans/C. parapsilosis


C. tropicalis

Mixed – SA/CNS


Mixed – EF/OE


P. aeruginosa*

Mixed – EC/PA*

* Pending FDA clearance

Mixed – CA/CG

C. glabrata/C. krusei

PNA FISH test (AdvanDx, Inc.Woburn, MA,USA)

Vol. 46, No. 1

JOURNAL OF CLINICAL MICROBIOLOGY, Jan. 2008, p. 50–55 0095-1137/08/\$08.00+0 doi:10.1128/JCM.01385-07 Copyright © 2008, American Society for Microbiology. All Rights Reserved.

Multicenter Evaluation of the *Candida albicans/Candida glabrata* Peptide Nucleic Acid Fluorescent In Situ Hybridization Method for Simultaneous Dual-Color Identification of *C. albicans* and *C. glabrata* Directly from Blood Culture Bottles[⊽]

Janeen R. Shepard,¹ Rachel M. Addison,⁷ Barbara D. Alexander,⁷ Phyllis Della-Latta,² Michael Gherna,³ Gerhard Haase,⁵ Gerri Hall,⁶ Jennifer K. Johnson,⁴ William G. Merz,³ Heidrun Peltroche-Llacsahuanga,⁵ Henrik Stender,¹ Richard A. Venezia,⁴ Deborah Wilson,⁶ Gary W. Procop,⁶[†] Fann Wu,² and Mark J. Fiandaca^{1*}

AdvanDx Inc., Woburn, Massachusetts¹; Columbia University Medical Center, New York, New York²; Johns Hopkins Medical Institutes, Baltimore, Maryland³; University of Maryland Medical Center, Baltimore, Maryland⁴; University Hospital RWTH Aachen, Germany⁵; Cleveland Clinic, Cleveland, Ohio⁶; and Duke University Medical Center, Durham, North Carolina⁷

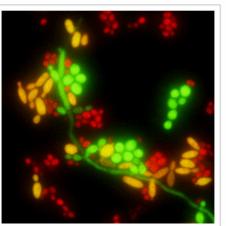
PNA FISH test

(AdvanDx, Inc.Woburn, MA,USA)

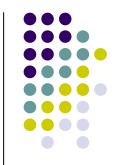
- Samples testes: 197 yeast-positive blood culture bottles
- 5 clinical laboratories were included in the study
- Comparison of PNA FISH X conventional culture performance

Laboratory	Blood culture system(s)	% (no./total)				
		Sensitivity		PPV	NDV	Suc alfaita
		C. albicans	C. glabrata	PPV	NPV	Specificity
А	BacT/Alert, BACTEC	100 (10/10)	100 (5/5)	100 (15/15)	100 (3/3)	100 (3/3)
В	BACTEC	100 (25/25)	100 (5/5)	100 (30/30)	100 (27/27)	100 (27/27)
С	BacT/Alert	92.30 (12/13)	100 (3/3)	100 (5/5)	90.Ò (9/1Ó)	100 (10/10)
D	BacT/Alert	100 (17/17)	100 (11/11)	100(28/28)	100 (25/25)	100 (25/25)
Е	BacT/Alert, BACTEC 9240	100 (14/14)	100 (13/13)	100 (27/27)	100 (17/17)	100 (17/17)
Total		98.7 (78/79)	100 (37/37)	100 (115/115)	98.8 (81/82)	100 (82/82)

TABLE 4. Performance statistics for the C. albicans/C. glabrata PNA FISH method at five clinical laboratories



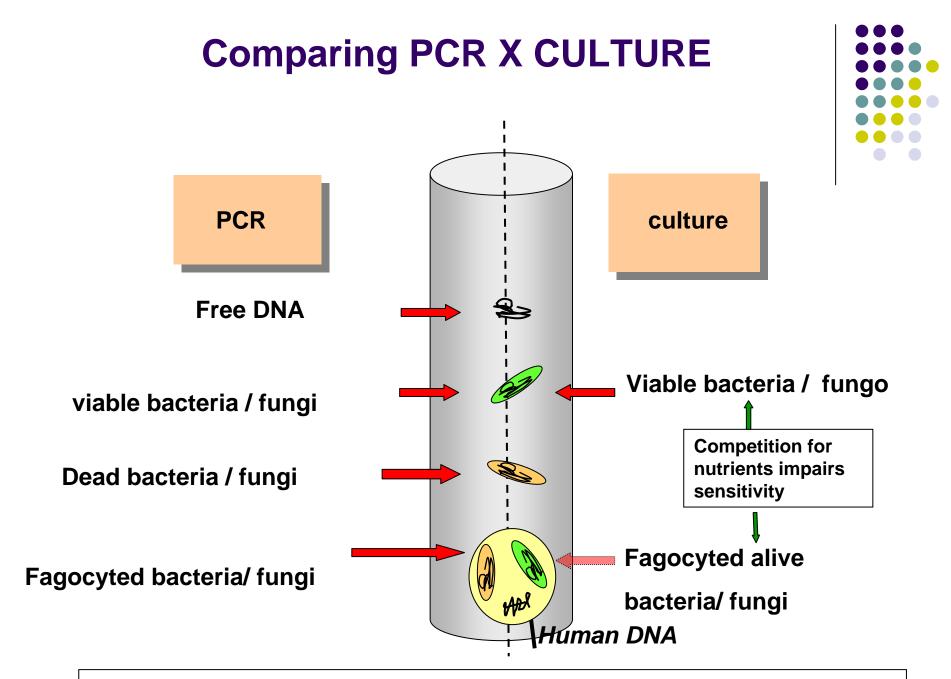
PNA FISH test


(AdvanDx, Inc.Woburn, MA,USA)

• Features:

- Rapid, molecular identification of bacteria and yeast directly from positive blood cultures
- Results available in 3 hours
- Identify the 5 Candida species most frequent in BSI
- Mixed infection can be identified
- Cost equivalent to the convencional culture (in USA)
- Submitted to ANVISA clearance

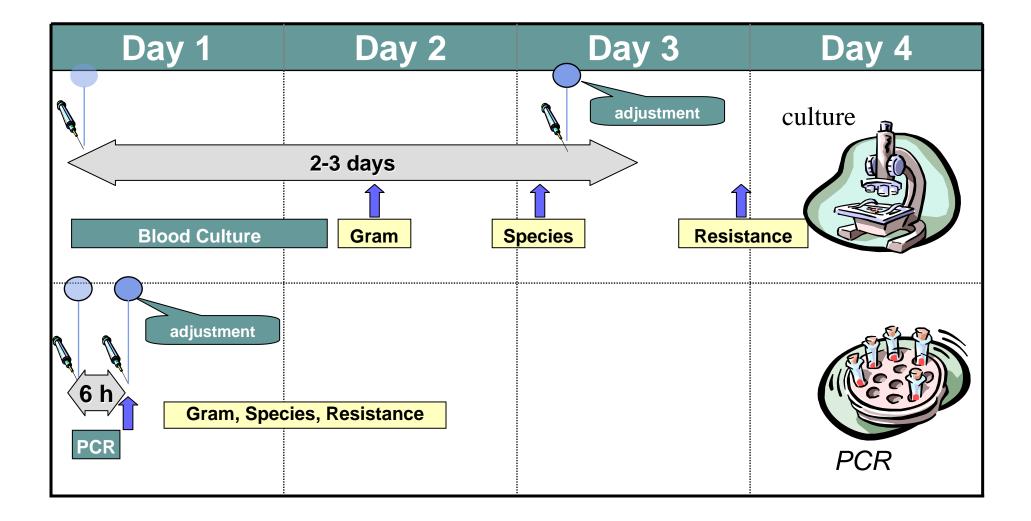
Mixed infection



Sepsis Diagnosis

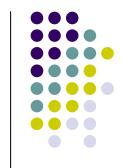


- LightCycler[®] SeptiFast Test (Roche) is a commercial method based on Real Time PCR methodology
- Allow the laboratory to detect and to identify the 25 bacteria and fungi species most important in bloodstream samples
- These species are responsible for 90% of all bloodstream infections
- Performed with whole blood specimens (K-EDTA)
- The Sepf*Fast* test requires specifically the LightCycler 2.0 instrument



PCR presents more chances to detect pathogens than the traditional culture

PCR provides early diagnosis


LightCycler ® SeptiFast test

- Test based on multiplex Real Time PCR
- Internal Transcribed Spacer Region (ITS) of ribosomal gene is the probe target
- ITS has been widely used for identification because:
 - Micoorganisms genome possess multi copies of this region
 - It is a variable region that allows species identification

Barry, T., Glennon, C.M., Dunican, L.K., Gannon, F., 1991. The 16s/23s ribosomal spacer region as a target for DNA probes to identify Eubacteria. *PCR Methods Appl* 1, 149.

Gurtler, V., Stanisich, V.A., 1996. New approaches to typing and identification of bacteria using the 16S-23S rDNA spacer region. *Microbiology* 142 (Pt 1), 3-16.

SeptiFast Master List (SML)

Gram (-)

- •Escherichia coli
- •Klebsiella (pneumoniae/oxytoca)
- •Serratia marcescens
- •Enterobacter (cloacae / aerog.)
- •Proteus mirabilis
- Pseudomonas aeruginosa
- •Acinetobacter baumannii
- •Stenotrophomonas maltophilia

Gram (+)

- •Staphylococcus aureus
- •CoNS¹
- •Strep. pneumoniae
- •Streptococcus spp.²
- •Enterococcus faecium
- •Enterococcus faecalis

Fungi

- Candida albicans
- Candida tropicalis
- •Candida parapsilosis
- •Candida glabrata
- •Candida krusei
- Aspergillus fumigatus

•1ConS coagulase negative Staphylococci (including e.g., S. epidermidis, S. haemolyticus)

•²Streptococcus species (including e.g., S. pyogenes, S. agalactiae, S. mitis)

Med Microbiol Immunol DOI 10.1007/s00430-007-0063-0

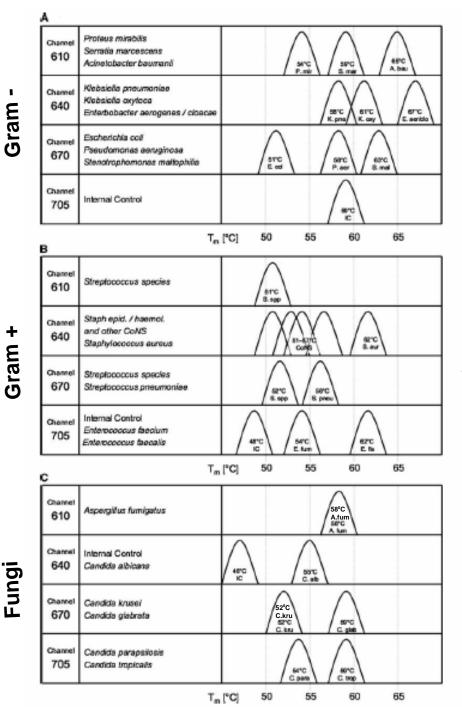
ORIGINAL INVESTIGATION

A multiplex real-time PCR assay for rapid detection and differentiation of 25 bacterial and fungal pathogens from whole blood samples

Lutz Eric Lehmann · Klaus-Peter Hunfeld · Thomas Emrich · Gerd Haberhausen · Heimo Wissing · Andreas Hoeft · Frank Stüber

Received: 29 June 2007 © Springer-Verlag 2007

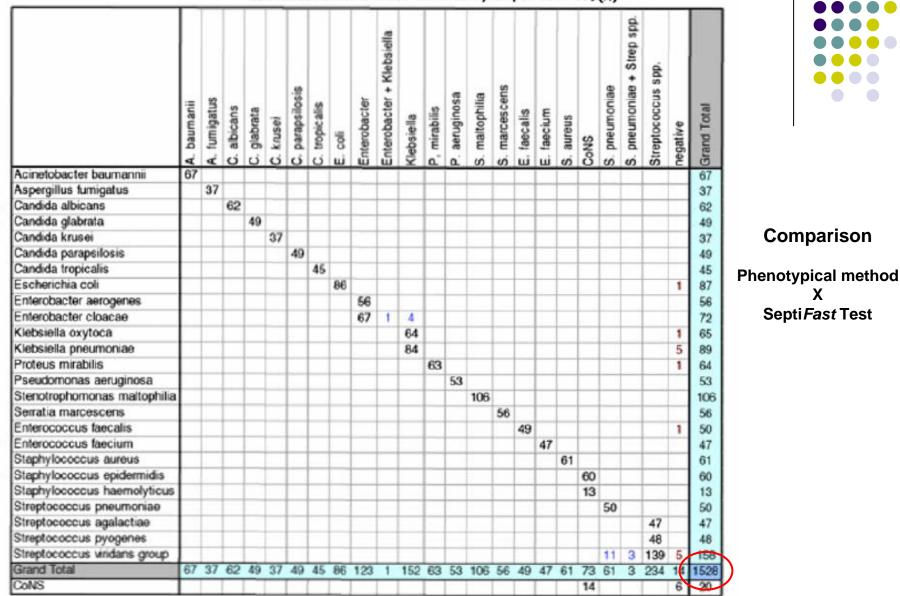
SeptiFast Test validation



Assay workflow

- 1. Specimen preparation by mecanical lysis and purification of DNA
- 2. Real-time PCR amplification of target DNA in three parallel reactions (Gram +, Gram -, fungi)
- 3. Automated identification of species using specific software

- During PCR reaction, specific products are detected using dye-labled hybridization probes by fluorescence measurement
- After completion of amplification, melting curve analysis is performed to further prove specificity of products
- Emitted fluorescence is measured in one of four detection channels of the LightCycler 2.0 instrument



Melting Curves and detection channels for all micoorganisms and internal controls

- •The melting temperature depends upon:
 - •Fragment lengh
 - Composition of sequence

Mixed infection can be detected

Lehman et al. 2007. Med Microbiol Immunol

Ξ

Vicrobiologically characterized clinical isolates

Identification of clinical isolates by SeptiFast Test (n)

Comparison

Х

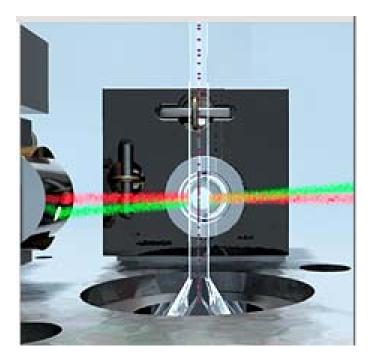
SeptiFast Test

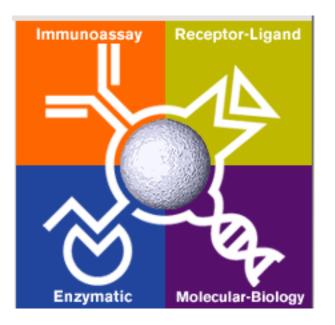
- Advantages of LightCycler[®] Septi*Fast* Test
 - Short time for diagnosis (<6h)
 - Performed directly form whole blood specimens (not require pre-incubation of blood culture)
 - Identify 90% of micoorganisms responsible for sepsis
 - Widely used in Europe (~40 centers)
 - USA not cleared by FDA yet
 - Brazil: cleared by ANVISA for diagnosis use
 - Two Brazilian centers have the LightCycler[®] Septi*Fast* Test
 - Cost: LightCycler 2.0 = US\$ 50.000 /Each test ~ R\$ 650-700

New technologies are coming for fungal infection diagnosis

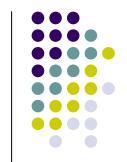
Luminex

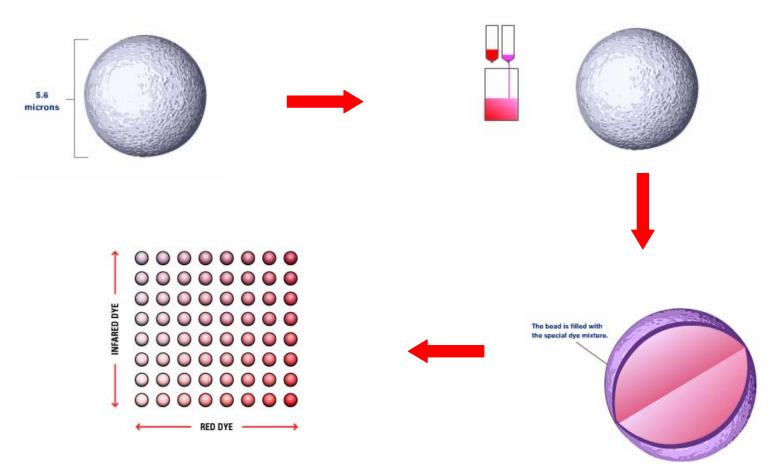
xMAP Technology


(Multianalyte Profile System)

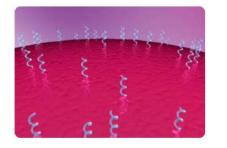


(Multianalyte Profile System)

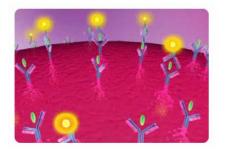


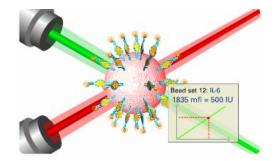

Flow cytometric technology

Applications overview

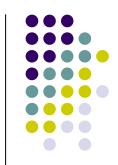


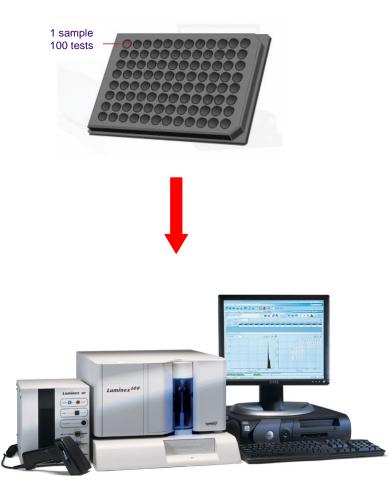
Microspheres are dyed to create 100 distinct colors

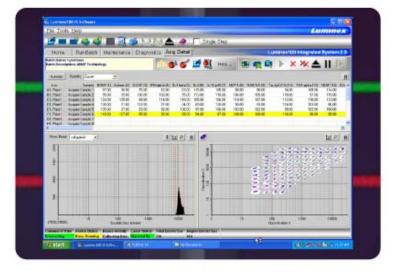

Each microsphere has 'spectral address' based on red/infrared content



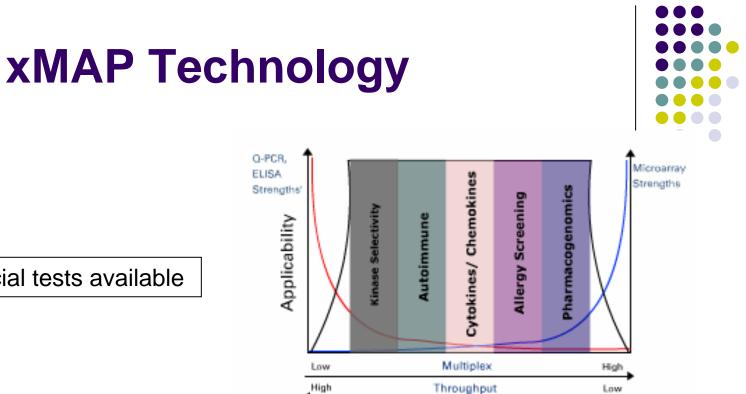
- Microspheres are coated with oligonucleotide
- Mix of microspheres coated with different oligonucleotides
- >Sample is added to microspheres




- Analyte is captured to microspheres
- Fluorescent reporter tag added



Lasers excite fluorescent dyes- red laser for bead classification and green for assay result



Software reports results in real-time
One plate reading time = 1 hour

Assay time = 4 hours

Commercial tests available

Advantages

•Rapid (4 h)

- •Sensitive (1blastoconidia/4ul)
- •Specific (>90%)
- •Flexibility to home-brew

- Fungi aplications (in house methodology):
 - Candida (Das et al., 2006. FEMS Immunol Med Microbiol. 46;244-250. (CDC))
 - Identify 6 Candida species: C. albicans, C. tropicalis, C. glabrata, C. parapsilosis, C. krusei, C. dubliniensis
 - Aspergillus (Etienne et al., 2009. JCM, 47:1096-1100)
 - Identify 6 relevant species: A. fumigatus, A. flavus, A. niger, A. terreus, A. ustus, A. versicolor.
 - *Trichosporon* (Diaz & Fell, 2004. JCM, 42:3696)
 - Identify 33 *Trichosporon* species
 - *Fusarium* (O'Donnell et al.2007. JCM,45:2235-2248)
 - Identify 6 medically important species complex, 10 most important species
 - 157 clinical isolates tested

Cost

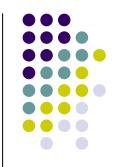
- Equipment: U\$ 60,000
- Price: U\$50-U\$60/ test (commercial kits)

- Test limitation:
 - Diagnosis limited to the number of probes tested

Ibis Technology

Ibis Biosciences, a subsidiary of Abbott Molecular, Inc.

Ibis Technology


- IBIS Biosciences developed the T6000[™] Biosensor System to identify infectious disease agents based on weighing DNA
- Based on PCR/ESI-MS (PCR Electrospray Ionization Mass Spectrometry)
- Identify organism by comparing base composition to database of >700,000 entries
- Results available in 6-8 hours
- For research use only

Future Perspective

• To develop and standardize molecular methodologies that address:

- Rapid and sensitive identification of pathogens without culture
- Detects co-infections with bacteria, viruses, and fungi in different clinical specimens
- > High resolution genotyping, drug resistance, virulence

Thank you