What do we know about the role of gliotoxin in pathobiology of *Aspergillus*

June Kwon-Chung

Laboratory of Clinical Infectious Diserases

NIAID/NIH

Fungal secondary metabolites

Non-ribosomal peptides (NRPs)
β-lactam antibiotics (e.g. penicillin)
Cyclosporin- immunosuppressant
Echinocandin- antifungal drug
Gliotoxin (Epipolythiodioxopiperazin, ETP)

Polyketides (PKS)

Lovastatin- cholesterol lowering agent Aflatoxin

Indole alkaloids

Ergotamine- migraine treatment

- Control of post partum bleeding

Terpenes

Trichodiene- toxin Aristolochene- toxin

Modified from Geoffrey Turner

ETP producing fungal phylogeny based on 18S rDNA sequences

Courtesy of B. J. Howlett

Why is gliotoxin the best candidate-toxin for the study of pathogenic importance ?

- The most abundant as well as most potent toxin of all the secondary metabolites produced by *A. fumigatus*
- Gliotoxin has immunosuppressivie properties and is detected in the serum and lung tissues in experimental and human invasive aspergillosis
- Ex-vivo experiments with mammalian cells (immune as well as non-immune cell lines) showed GT causes both apoptosis and necrotic cell death
- Gliotoxin inhibits assembly of the human respiratory burst NADPH oxidase
- Direct activation of the proapoptotic Bak followed by ROS generation
- It is known to exacerbate invasive aspergillosis in animals

Genomic organization of the 12 *gli* gene cluster responsible for gliotoxin biosynthesis in *A. fumigatus*

Putative Gliotoxin biosynthetic pathway

The 12 gene cluster is responsible for the synthesis of gliotoxin (ETP)

- Bioinformatic approach allowed the discovery of a 12-gene cluster homologous to the gene cluster responsible for synthesis of sirodesmin (ETP) in *L. maculans*
- Disruption of *gliZ* or *gliP* abolished the production of gliotoxin which recovered upon reconstitution of the mutants
- Over expression of *gliZ* resulted in higher production of gliotoxin
- Deletion of *gliZ* resulted in loss of gene expression of other *gli* cluster genes

A. fumigatus strains (WT) used for functional studies of the genes involved in gliotoxin biosynthesis

Af 293 : Clinical isolate, Genomic strain, *MAT-2*

B-5233 : Clinical isolate from a case of fatal aspergillosis, *MAT-1*

CEA 10 : Clinical isolate from a case of aspergillosis, *MAT-1*

Gliotoxin production in A. *fumigatus* but not in morphologically similar species A. *lentulus, A. novofumigatus* and A. *fumigatiaffinis*

fumigatus	lentulus	novofumigatus	fumigatiaffinis
Gliotoxin +		Gliotoxin -	Coutesy of Samson, R.

Strain back ground	Gene deleted	Mouse Strains, Ino.rout	Immunosuppressive regimen	Virulence	Ref.
Af293	gliP	Outbred ICR, inhal.	Cyclophosphamide + Cortisone acetate	No effect	Cramer <i>et al,</i> 2006
Af293	gliP	Balb/C, inhal.	Cyclophosphamide + Cortisone acetate	No effect	Spikes <i>et al,</i> 2008
Af293	gliP	Balb/C, inhal.	Cortisone acetate	Attenuated	Spikes <i>et al,</i> 2008
CEA10	gliP	Balb/C, IN	Cyclophosphamide + Cortisone acetate	No effect	Kupfahl et al, 2006
B-5223	gliP	Balb/C, IN	Cortisone acetate	Attenuated	Sugui et al, 2007
B-5233	gliP	129/Sv	Cortisone acetate	Attenuated	Sugui et al, 2007
Af 293	gliZ	Outbred ICR, IN	Cyclophosphamide + Cortisone acetate	No effect	Bok et al, 2006

Contradictory results on the Role of gliotoxin in pathobiology of *A. fumigatus*

Functional studies of *gliP* that showed a positive effect of gliotoxin in the pathobiology of *A. fumigatus*

B-5233 : Sugui et al., 2007 (Eukaryot. Cell)

HPLC analysis of gliotoxin in the culture filtrates

Chemiluminescence of neutrophils incubated with culture filtrates of *A. fumigatus*, B-5233, *gliP* and reconstituted strains

Phosphatidylserine translocation induced by CF of *A. fumigatus* B-5233 in bone marrow-derived neutrophils of 129/sV mice

Cell detachment of Mouse Embryonic Fibroblast cell line by CF

Control

Virulence of *A. fumigatus*, B-5233, *glip*⊿ and reconstituted strains in two different mouse strains

Cortisone acetate treated mice:

129/Sv

Balb/C

Histopathology of mouse lungs

Functional studies of *gliP* that showed a positive effect of gliotoxin in the pathobiology of *A. fumigatus*

Af 293 : Spikes et al., 2008 (JID in Press)

Deletion of *gliP* does not affect growth or sporulation

37°C-2d 25°C-5d Af293 ∆gliP $\Delta gliP_R$ AF293 AF 293

Courtesy of Greg May

31°C-2d

45°C-2d

Survival of Balb/C mice infected with Af293 strains immunosuppressed with cortisone-acetate

Intranasal inoculation 5 million spores

Inhalation: 1h exposure to 12 ml suspension (10⁹ spore/ml)

Histological sections stained with PAS strain showing neutrophil destruction in the lung by the wild type, *glip*∆ and reconstituted strains (Af293)

Spikes et al, JID. 2008

Virulence of the wild type, *gliP*∆ and reconstituted strains in Toll-deficient *Drosophila melanogaster*

Spikes et al, JID in press

Reasons for contradictory results of the pathobiological role of *∆gliP*

- Mouse strain : No
- Fungal strain : No
- Route of infection : No
- Immunosuppressive regimens: Yes

Virulence of Af293, *gliP*⊿ and reconstituted strains in Balb/C mice

Treated with: Cyclophosphamide **Cortisone acetate** + cortisone acetate

Infected via: Inhalation

Inhalation

Spikes et al, JID. 2008

Conclusions

- Gliotoxin plays an important role in the pathobiology of *A. fumigatus*
- Contribution of gliotoxin to *A. fumigatus* virulence can be detected only in non-neutropenic mice
- Drosophila is a useful model to assess the toxic effect of gliotoxin and may also be for other secondary metabolites
- These results suggest that the major target of gliotoxin is neutrophils/ phagocytes
- Neutropenic mouse model widely used for *A. fumigatus* virulence study may be inappropriate for the assessment of the importance of other secondary metabolites in aspergillosis

Acknowledgements

LCID/NIH	LHD/NIAID	Max-Planck-Institut für Immunbiologie
Janyce Sugui	John Gallin	Markus Simmon
Yun C. Chang	Kol Zarember	Julian Pardo

Greg May and his co-workers for the gliotoxin project, in press