Clinical Risk Factors for Invasive Aspergillosis

February 5, 2010

John W. Baddley, MD, MSPH
University of Alabama at Birmingham, USA
Birmingham VAMC
jbaddley@uab.edu

Risk Factors for IA

Risk factor: variable associated with an chance of developing something

Types of risk factors for IA:

Clinical- host-related, co-morbidities, transplant variables

Biologic- iron overload, hyperglycemia

Environmental

Host/pathogen interaction

Identifying clinical risk factors for IA:

Clinical Trials

Cohort (usually retrospective)

Case-control studies

Case series

Risk of Invasive Aspergillosis*

Group	Risk (%)
Hematopoietic Stem Cell Transplants	5-10
Solid Organ Transplants	10-15
Hematologic malignancies	5-25
Chronic Obstructive Pulmonary Disease	1-9
HIV/AIDS	0-5
Other Causes (Trauma, ICU, steroids)	4-7
Other immunosuppression	0-??

^{*} Risk defined as cumulative incidence per year

HSCT Risk Factors

- Age
- Underlying disease
- Stem cell source
- T-cell depleted products
- Corticosteroids (dose, duration)
- Conditioning regimen
- GVHD presence and treatment

- Neutropenia (pre- and postengraftment)
- Lymphopenia
- CMV disease
- Iron overload
- Elevated ferritin
- Previous IA
- Respiratory viruses
- Antifungal prophylaxis

Marr et al. Blood 2002;100:4358 Girmenia et al, Clin Infect Dis 2009:49;1226-36. Maschmeyer et al., Drugs 2007;67:1567-1601. Post MJ et al. Transplant Infect Dise 2007;9:189-195. Garcia-Vidal et al., CID 2008;47:1041-50

Epidemiology of invasive mold infections in allogeneic stem cell transplant recipients: biological risk factors for infection according to time after transplantation.

Garcia-Vidal et al., Clin Infect Dis 2008:47:1041-50

- Objectives:
 - 1) Analyze risk factors for IMI after HSCT
 - 2) Differentiate risk factors for early vs. late IMI
 - 3) Evaluate biological risk factors
- 1248 HSCT patients evaluated (1998-2002)
- 163 IMI cases, 142 (87%) with IA

Garcia-Vidal et al.

Risk Factors (for IMI) per multivariable analysis:

- Older age
- CMV disease
- Respiratory virus infection (influenza, parainfluenza)
- Severe acute GVHD
- Cell-line cytopenias
- High frequency of blood transfusions

Figure 3. Timing of invasive mold infections (IMIs). Early IMI refers to infection diagnosed from day 0 through day 40; late IMI refers to infection diagnosed from day 41 through day 100; very late IMI refers to infection diagnosed after day 100.

Garcia-Vidal et al.

Early (1-39)

- Unrelated donor
- HLA mismatch
- ATG
- CMV disease
- Transfusion
- Corticoseroids
- Hyperglycemia
- Lymphopenia
- Ferritin level

Late (40-100)

- Sex (female)
- Age
- CMV disease
- Transfusion
- Acute GVHD
- Corticosteroids

Lower respiratory tract infections increase risk of aspergillosis after a reduced-intensity allogeneic hematopoietic SCT

Martino et al, Bone Marrow Transplantation 2009 44;749

- Analyzed 219 patients with reduced intensity conditioning (fludarabine + BU or melphalan) transplanted between 1997-2007.
- Prospectively monitored patients for IA, viral infections
- 4-year cumulative incidence of IA was 15%
- 27 patients developed IA
- **Risk factors** (multivariable analysis):
 - -Steroid therapy for moderate-to-severe GVHD
 - -CMV disease
 - -Viral lower respiratory tract infection (HR 4.3, 95% CI 2-9.4)
- Viruses: influenza A/B, parainfluenza virus, RSV, metapneumovirus, adenovirus

Increased bone marrow iron stores is an independent risk factor for IA in patients with high-risk hematologic malignancies and recipients of allogeneic hematopoietic stem cell transplantation.

Kontoyiannis et al., Cancer 2007; 110:1303-6.

- Compared 33 patients with IA and 33 high-risk patients without IFI (9/2002-3/2003)
- Calculated and compared bone marrow iron stores and other characteristics
- Patients similar, except APACHE II greater in cases
- 23 (70%) cases, compared with 6 (18%) controls had elevated iron stores (p<0.001)

 Increased BMIS and APACHE II were independent predictors of IA (logistic regression)

■ Control patients□ IA patients

Percentage %

Cancer Patients

- Neutropenia
- Type of cancer
- Corticosteroid use
- Chemotherapy

Maschmeyer et al., Drugs 2007;67:1567-1601 Rubio et al., J Pediatric Hematol Oncol 2009; 31:642-646.

Clinical characteristics of 45 patients with invasive aspergillosis. Restrospective analysis of 1711 lung cancer cases.

Yan et al., Cancer 2009;115:5018-25.

- All lung cancer patients with IPA seen during 2000-2007 were evaluated
- 45 (2.63%) cases of IPA in 1711 lung cancer patients
- Risk Factors:
 - -Stage IV cancer
 - -Chemotherapy (preceding month)
 - -Corticosteroid therapy > 3 days

Solid Organ Transplants

- **Lung**: Single lung, rejection, reperfusion injury, *Aspergillus* colonization, anastamotic site ischemia, hypogammaglobulinemia, CMV, cystic fibrosis(?), antifungal prophylaxis(?)
- Liver: Poor allograft function, pre-transplant hepatic failure, Re-transplantation, renal insufficiency, dialysis, high transfusion requirement, iron overload, steroids, ICU stay
- Heart:?
- Kidney or Kidney/Pancreas: ?

IA in SOTs

Expressed as IA cases per 100 patients transplanted

TRANSNET, unpublished data
Permission from Tom Chiller and Pete Pappas

Risk factors for invasive aspergillosis in solid organ transplant recipients: a case-control study

Gavalda et al., Clinical Infectious Diseases 2005:41:52-9.

- Retrospective case-control study of 156 cases of proven/probable IA, matched to 312 controls
- 11 Spanish centers (REISTRA), total of 11,014 SOT patients
- Study period: transplant program start date to 2001

• IA Cases:

Liver	80 (51.3%)
Heart	47 (30.1%)
Lung	17 (10.9%)
Kidney	10 (6.4%)
Kidney/Pancreas	2 (1.3%)

Gavalda et al.

Early (<3 months)

- CMV mismatch
- ICU stay
- Renal failure
- Hepatic failure
- Hemodialysis
- >1 bacterial infection
- CMV disease

Late (>3 months)

- Age > 50 years
- Renal failure
- Immunosuppressive use
- > 1 bacterial infection
- Chronic-graft rejection
- Immunosuppressionrelated neoplasm

IA in the ICU

- Potentially emerging problem (247,000 Google hits 1/15; 248,000 hits 2/1)
- Incidence of up to 6% in Medical ICUs
- Non-traditional groups at risk:
 - Corticosteroid use
 - COPD
 - Cirrhosis
 - HIV
 - Malnutrition
 - Prolonged antibiotic use

IA in COPD Patients

- Increasing reports of the importance of COPD as a risk factor or an underlying co-morbidity in patients with IA
- It is estimated that up to 10% of cases of IA occur in patients with COPD and up to 5% of patients with COPD have IA.
- Mortality in COPD patients with IA ranges from 30-100%
- Problem: certainty of diagnosis of IA
- Risk factors- few data:
 - -Corticosteroid treatment (daily oral doses of >20 mg of prednisone)
 - -Previous antibiotic use
 - -Late-stage COPD
 - -Viral infection
 - -Inhaled steroids

Pulmonary aspergillosis in patients with chronic obstructive pulmonary disease: incidence, risk factors, and outcome.

Guinea et al. Clinical Microbiology and Infection 2009

- Retrospective study of COPD admissions who had isolation of *Aspergillus* from a pulmonary sample (2000-2007)
- 14, 618 with COPD, 239 of whom had positive *Aspergillus* respiratory tract cultures
- 53 cases of probable IA identified (3.6 cases/1000 COPD admissions)
- IPA present in 22% of cases of COPD with positive *Aspergillus* cultures

IA in COPD Patients

Risk Factors for IA in COPD

Factor	OR	95% CI
ICU admission	2.4	1.09, 5.29
Steroids ¹	2.98	1.26, 7.0
Steroids ²	4.67	2.02, 10.3
Antibiotic use	2.57	1.2, 5.4
Chronic HF	2.1	0.98, 4.5

¹ accumulated dose prior to admission

² accumulated dose during admission

Thanks to Miriam Tarallo

Study Design Schematic

Entire COPD cohort

Perspective database (>400 hospitals)

Exclude patients having conditions apart from COPD that might put them at increased risk of IA:

- Hematologic malignancy (200.xx 208.xx)
- AIDS/HIV (042)
- Bone marrow transplants (41.00 41.09)
- Solid organ transplants (37.51, 55.6x, 50.5x, 46.97, 33.5x, 33.6)
- Allergic Aspergillosis (sinusitis) (518.6)
- Chronic mycotic otitis externa (380.15)
- Thoracic/lung surgeries (32.3, 32.4, 32.5)
- Aplastic anemia (284.x)
- Neutropenia (288.0x)
- Reticuloendothelial / immunity disorders (279.x; EXCEPT 279.4)
- Patients discharge alive with onset of antifungal during hospital stay < 1 week
- Patients discharged alive, with hospital stay >= 1 week, but anti-fungal therapy < 1 week
- Patients < 18 years of age
- Patients not having a complete hospital stay (admission and discharge date) during the time frame

Extract COPD + Aspergillosis patients using:

ICD-9 = 117.3x (Aspergillosis) **AND** ICD-9 = 491, 492, 493.2x, 496 (COPD)

Identify the "Invasive" Aspergillosis (CASES) using the following proxies:

- Pneumonia in Aspergillosis (484.6) + COPD
- Pneumonia in Cytomegalo virus infection (484.1) + COPD + Aspergillosis
- Pneumonia in Influenza (487.0) + COPD + Aspergillosis
- Pneumonia in other systemic mycosis (484.7) + COPD + Aspergillosis

Remaining COPD Patients without aspergillosis

Identify the matched COPD patients without aspergillosis (CONTROLS) in a case-to-control ratio of 1:2, based on age, gender, race, payer, hospital characters, geographical area, comorbidity index, and severity of illness.

Perform descriptive analysis on the CASES:

- Socio-demographic characteristics
- Mortality
- Length of treatment and switching pattern
- Length of hospitalization
- Re-hospitalization
- Procedures (surgical, mechanical ventilation)
- Total cost and cost component

Perform comparative analysis between the two cohorts on

resource utilization and mortality using univariate descriptive analyses. Statistical comparisons were made using Kruskal-Wallis (non-parametric tests and Chi-square tests.

Antibody Immunosuppressants

Non-cellular Target

Cellular Target

Others

Complement: Eculizimab TNFs:Infliximab, Adalimumab

Certolizumab, afelimomab

IgE: Omalizumab

IL-5: Mepolizumab

Interferon: Faralimomab

IL-6: Elsilimomab

IL-12/13: Ustekinumab

CD3: Muronomab-CD3, Otelixizumab, Teplizumab

CD4: Clenoxilimab,

Keliximab, Zanolibumab

CD20: Rituximab

CD40: Teneliximab

CD-52: Alemtuzumab

Integrin: Natalizumab

IL-6 Receptor: Tocilizumab

IL-2 Receptor: Basiliximab,

Daclizumab

Polyclonal:

Anti-thymocyte globulin

Fusion Proteins:

TNF: Etanercept

CTLA-4: Abatacept,

Belatacept

Background: Anti-TNF Therapy

- Tumor Necrosis Factor: expressed in many cells of the immune system and induces responses in both innate and adaptive immunity
- Transmembrane and soluble forms that differentially bind to two TNF receptors
- Roles:
 - 1) Recruitment of inflammatory cells
 - 2) Activates macrophages
 - 3) Regulates inflammation (induces apoptosis)
- TNF-RI (p55)- role in inflammation and granuloma formation
- TNF-RII (p75)- affects survival of macrophages

Anti-TNF and Aspergillosis

TABLE 2. Fungal Infections Associated With Anti-Tumor Necrosis Factor α Therapy^a

	1.7		
Infectious agents	Infliximab	Etanercept	Adalimumab
Aspergillus species (n=64)	48	14	2
Zygomycetes (n=4)	3	NC	1
Candida species (n=64)	54	9	1
Cryptococcus species (n=28)	17	10	1
Blastomyces species (n=2)	ND	ND	ND
Coccidioides species (n=29)	27	2	NC
Histoplasma species (n=84)	72	8	4
Sporothrix species (n=1)	1 ^b	NC	NC
Prototheca species (n=1)	1	NC	NC
Tinea or pityriasis			
versicolor (n=6)	3	1	2
Total	226	44	11

^a ND = no data available; NC = no cases identified.

^b In this case etanercept was used as well, but symptoms worsened while the patient received infliximab.

Differential Effects of TNF-α Inhibitors

	Infliximab group	Etanercept group	Rate	_
Pathogen, type of infection	(n = 233,000)	(n = 113,000)	ratio	Р
Mycobacterium tuberculosis	335 (143.8)	39 (34.5)	4.17	<.001 ^a
Histoplasma capsulatum	39 (16.7)	3 (2.7)	6.30	<.001 ^b
Candida species				
Any	38 (16.3)	8 (7.1)	2.30	.006 ^b
NS	26 (11.2)	7 (6.2)	1.80	.065 ^b
Systemic	10 (4.3)	1 (0.9)	4.85	.046 ^b
Listeria species	36 (15.5)	2 (1.8)	8.73	<.001 ^b
Mycobacterium species (NS)	30 (12.9)	7 (6.2)	2.08	.023 ^b
Aspergillus species	29 (12.4)	10 (8.8)	1.41	.17 ^b
Cryptococcus species	11 (4.7)	8 (7.1)	0.67	.91 ^b
Nocardia species	10 (4.3)	1 (0.9)	4.85	.046 ^b
Salmonella species	7 (3.0)	4 (3.5)	0.85	.75 ^b
Toxoplasma species	5 (2.1)	0 (0)		.088 ^b
Brucella species	2 (0.9)	0 (0)		.38 ^b
Bartonella species	1 (0.4)	0 (0)		.62 ^b
Leishmania species	1 (0.4)	0 (0)		.62 ^b
Mycobacterium leprae ^c	1 (0.4)	0 (0)		.62 ^b
Overall	556 (238.6)	83 (73.5)	3.25	<.001 ^a

NOTE. Data are no. of patients (no. per 100,000 patients who received the drug). NS, species was not specified.

a By χ² analysis.

b By Poisson analysis.

Resulted in leprosy

Anti-TNF and Aspergillosis

Multiple Studies/Registries In Progress:

- 1) Biologics Safety Project (SABER)
 - -AHRQ/FDA-funded
 - -Databases from CMS, TennCare, Kaiser Permanente
- 2) US Veteran's Health Administration database
 - -330,000 unique RA/inflammatory arthritis patients
- 3) German biologics register (RABBITT) (2001-present)

AIDS and Aspergillosis

HIV and Aspergillosis

- Relatively uncommon infection, with an overall incidence of <1%. Is it increasing?
- 2003 NIS database of 10,400 aspergillosis cases, 3.7% in HIV-infected, incidence of 0.43%¹
- Risk Factors:
 - -Advanced AIDS
 - -Neutropenia (zidovudine, sulfa)
 - -Steroids
 - -Antibiotics
 - -Marijuana or alcohol use
 - -Previous *Pneumocystis* infection
 - -Tuberculosis?

Conclusions

- Increasing groups at risk for IA
- Data on clinical risk factors are lacking for certain groups (TNF, SOTs)
- Timing is everything
- Interest in biologic factors
- Tailoring prevention strategies to risk factors is the goal