DETECTION OF FUNGAL INFECTIONS WITH RADIOLABELED ANTIFUNGAL AGENTS

Clinical history

Physical examination

Laboratory tests

Imaging studies

signs and symptoms are suggestive of an infectious or a non-infectious cause

> 85% of patients referred to hospital are febrile due to an infection

< 50% of febrile episodes can be attributed to infections

clinical manifestations of infection are subtle, non-typical, non-existent

identification of an infection at an early stage of the disease is critical for a favourable outcome

Laboratory tests

- erythrocyte sedimentation rate
- white-blood-cell count
- acute-phase proteins
- cytokines

Can nuclear medicine make an important contribution?

Current radiopharmaceuticals:

gallium-67-citrate (⁶⁷Ga)-labelled polyclonal human immunoglobulins indium-111 (¹¹¹In)-labelled polyclonal human immunoglobulins technetium-99m (^{99m}Tc)-labelled polyclonal human immunoglobulins (¹¹¹In)-labelled autologous leukocytes (^{99m}Tc)-labelled autologous leukocytes

(^{99m}Tc)-labelled antigranulocyte monoclonal antibodies (or fragments thereof) (^{99m}Tc)-labelled chemotactic peptides

(99mTc)-labelled interleukins

We need a radiopharmaceutical that binds to a variety of micro-organisms with little or no binding to host cells

Antimicrobial peptides often display preferential binding to micro-organisms

Radiopharmaceuticals recruited from human antimicrobial peptides can be promising candidates to discriminate infections from inflammations

Mammals	Humans	α -, β -Defensins	Insects	Defensins		
		Cathelicidins		Thanatin		
		Histatins		Drosomycin		
		Lactoferrin		Cecropins		
		Ubiquicidin		Drosocin		
	Rhesus macaque	e α-, β-, θ-defensins		Attacin		
_		Cathelicidins		Diptericin		
	Pigs	Protegrins	Metchnikowin			
		PR39	Horseshoe crabs	Tachyplesins		
		Prophenin		Polyphemusin		
		Cecropin		Tachystatins		
		Cathelicidins		Defensins		
		β-Defensin-1		Anti-LPS factor		
Frogs		Magainins	Plants	Thionins		
		Dermaseptins		Defensins		
		Esculentins		Shepherins		
		Brevinins	Bacteria	Pediocin PA-1		
		Bombinin		Leucocin A UAL-187		
		Temporins		Mesentericin Y105		
		Japonicins		Sakacin P		
		Tigerinins		Curvacin A		
		Ranatuerins		Nisin		
		Palustrins		Cecropin-like peptide		
		Ranalexins				
		Gaegurins				
		Nigrocins				

Examples of antimicrobial proteins/peptides found in nature

Structural classes of antimicrobial peptides. (A) Mixed structure of human β -defensin-2 (PDB code 1FQQ) (216); (B) looped thanatin (PDB code 8TFV) (156); (C) β -sheeted polyphemusin (PDB code 1RKK) (202); (D) rabbit kidney defensin-1 (PDB code 1EWS) (165); (E) a-helical magainin-2 (PDB code 2MAG) (76); (F) extended indolicidin (PDB code 1G89) (212). The disulfide bonds are indicated in yellow, and the illustrations have been prepared with use of the graphic program MolMol 2K.1 (132). From: Hancock *et al.* Clin. Microbiol. Rev. 19:491-511, 2006.

From: Zasloff M. Nature 415:389-395, 2002.

Production of sufficient amounts of cationic peptides under GLP conditions:

- recombinant cationic-peptide production by bacteria
- peptide synthesis:

chemical variants introduction of chelators

Radiolabeling of peptides

the radionuclide should be firmely attached to the peptide

or incorporated into the peptide

labeling should not affect the binding activity of the peptide

Selection of ^{99m}Tc-labeled antimicrobial peptides for scintigraphic studies

- *in vitro* binding studies
- *in vivo* binding studies
- pharmacokinetics

	Staphylococcus aureus	Klebsiella pneumoniae	Candida albicans	Activated leukocytes		
^{99m} Tc-hLF 21-31	 1±1	2±2	38±2	4±5		
^{99m} Tc-hLF 1-11	24±1	25±8	31±4	11±15		
^{99m} Tc-UBI 18-35	73±14	52±11	8±3	18±6		
^{99m} Tc-UBI 31-38	63±16	34±13	2±1	5±3		
^{99m} Tc-UBI 22-35	83±10	41±27	3±1	6±4		
^{99m} Tc-UBI 29-41	41±6	15±6	11±1	4±2		
^{99m} Tc-HNP 1-3	48±20	37±12	n. d.	13±4		

In vitro binding studies of ^{99m}Tc-peptides to micro-organisms and activated leukocytes

Binding per 10^7 cells (% of added radioactivity)

Values are means±SEM of at least four observations.

From: Lupetti et al. Quarterly J. Nucl. Med. 47:238-245, 2003

n.d. = not done

Peptide

Biodistribution of ^{99m}Tc-labeled hLF 1-11 in a normal rabbit at various time intervals.

From: Brouwer *et al.* Peptides 29:1109-1117, 2008.

Biodistribution of ^{99m}Tc-UBI 29-41 in a healthy rabbit at 2 h after i.v. injection of the radiolabeled peptide.

From: Lupetti et al. Lancet Infect. Dis. 3:223-229, 2003.

^{99m}Tc-α defensins (HNP 1-3; blue bars),
^{99m}Tc-UBI 29-41 (yellow bars)
^{99m}Tc-IgG (red bars)

* p < 0.05 compared with the values for mice with an inflammatory process according to *Student* t test

From: Lupetti et al. Lancet Infect. Dis. 3:223-229, 2003.

the **ideal tracer** for infection imaging should fulfill the following criteria:

 rapid uptake at sites of infection with little or no accumulation at sites of sterile inflammation;

ii) good stability of the labeled complex under physiological conditions;

iii) preservation of binding activity upon labeling;

iv) rapid clearance from the circulation with little or no accumulation in unaffected tissues,

v) little or no adverse effects, such as toxicity and immunological reactions

two new groups of tracers have been introduced

^{99m}Tc-labeled ciprofloxacin (^{99m}Tc-Infecton)

^{99m}Tc-labeled fluconazole

Can ^{99m}Tc-labeled antimicrobial peptides, ^{99m}Tc-fluconazole visualize *C. albicans* infections?

fluconazole-resistant C. albicans-infected mice

From: Welling et al. J. Nucl. Med. 42:788-794, 2001

C. albicans-infected mice

Right: scintigraphic imaging of the biodistribution of the tracers in the entire animal.

Left: scintigrams of the same animal with higher contrast visualising the thigh muscle infection/inflammation indicated by an arrow at 1 h after injection of the tracers.

From: Lupetti et al. Eur. J. Nucl. Med. 29:674-679, 2002

C. albicans-infected mice (open bars) mice inflamed with heat-killed *C. albicans* (*hatched bars*) or lipopolysaccharide (*LPS, closed bars*)

From: Lupetti et al. Eur. J. Nucl. Med. 29:674-679, 2002

From: Lupetti et al. Eur. J. Nucl. Med. 29:674-679, 2002

Can nuclear medicine contribute in monitoring the efficacy of antifungal therapy?

Monitoring the efficacy of antifungal therapy by accumulation of ^{99m}Tc-UBI 29-41

Is ^{99m}Tc-fluconazole able to discriminate between *C. albicans* and bacterial infections?

Mice infected/inflamed with:

C. albicans (open bars) MRSA (diagonally hatched bars) *K. pneumoniae* (vertically hatched bars) heat-killed *C. albicans* (dotted bars) LPS (closed bars)

C. albicans

C. albicans

Are ^{99m}Tc-antimicrobial peptides able to discriminate between *C. albicans* and bacterial infections?

Mice infected/inflamed with:

C. albicans (open bars) MRSA (diagonally hatched bars) *K. pneumoniae* (horizontally hatched bars) heat-killed *C. albicans* (dotted bars) LPS (closed bars)

C. albicans infected mice

Can ^{99m}Tc-labeled antimicrobial compounds visualize *A. fumigatus* infections?

A. fumigatus infected leukocytopenic mice

A. fumigatus (open bars) LPS (closed bars)

From: Lupetti et al. Eur. J. Nucl. Med. 29:674-679, 2002

A. fumigatus infected leukocytopenic mice (open bars) or inflamed with LPS (closed bars)

A. fumigatus infected leukocytopenic mice (open bars) or inflamed with LPS (closed bars)

^{99m} Tc compound Injected radioactivity (% injected dose)									
	Bladder		Kidneys		Liver				
	15 min	60 min	240 min	15 min	60 min	240 min	15 min	60 min	240 min
Fluconazole	29±3	34±2	29±7	24±2	22±7	22±4	19±2	10±2	8±7
hLF 1-11	12±2	18±3	27±3	15±3	15±2	19±2	24±2	26±2	38±2
UBI 29-41	23±3	32±5	17±3	19±2	22±2	12±2	17±2	14±2	10±1
IgG	17±3	47 ± 2	7±3	14 ± 7	20±2	18±2	17 ± 2	14 ± 2	10 ± 1

Biodistribution of ^{99m}Tc-labelled compounds in mice infected with *C. albicans*

Values are the mean±SD of at least four observations

From: Lupetti et al. Eur. J. Nucl. Med. 29:674-679, 2002

ROUTES OF ADMINISTRATION

Accumulation of ^{99m}Tc-labeled hLF 1-11 in MRSA-infected thigh muscles in mice at various intervals after different routes of administration: iv. (open bars) ip. (closed bars) subcutaneous (grey bars) oral (hatched bars) Results are the means ± S.E.M. of at least eight animals.

From: Brouwer et al. Peptides 29:1109-1117, 2008.

... and in clinical studies?

(A) Patient with a negative ^{99m}Tc-UBI 29-41 scintigraphy. (B) Patient with a positive ^{99m}Tc-UBI 29-41 scintigraphy. Dose injected 740 MBq (20 mCi), 500 kilocounts (kcts) per scan. MCts, mediastinum counts; LCts, lung counts; M/L ratio, mediastinum/lung counts ratio. From: Vallejo *et al.* Arch. Med. Research 39:768-774, 2008. Department of Infectious Diseases Leiden University Medical Center Leiden, The Netherlands Department of Radiology Leiden University Medical Center Leiden, The Netherlands

P. H. NIBBERING

M. M. WELLING E. K. J. PAUWELS

Dipartimento di Patologia Sperimentale B.M.I.E. Università di Pisa Pisa

M. CAMPA