Sexual structures in *Aspergillus* -- morphology, importance and genomics

David M. Geiser Department of Plant Pathology Penn State University University Park, PA

Geiser mini-CV

- 1989-95: PhD at University of Georgia (Bill Timberlake and Mike Arnold): *Aspergillus* molecular evolutionary genetics (*A. nidulans*)
- 1995-98: postdoc at UC Berkeley (John Taylor): (*A. flavus/oryzae/parasiticus*, *A. fumigatus*, *A. sydowii*)
- 1998-: Faculty at Penn State; Director of Fusarium Research Center -- molecular evolution of *Fusarium* and other fungi

Chaetosartorya

Petromyces

Hemicarpenteles

Neosartorya

Fennellia

Aspergillus

Neocarpenteles

Eurotium

Warcupiella

Neopetromyces

Emericella

Sexual structures in Aspergillus -morphology, importance and genomics

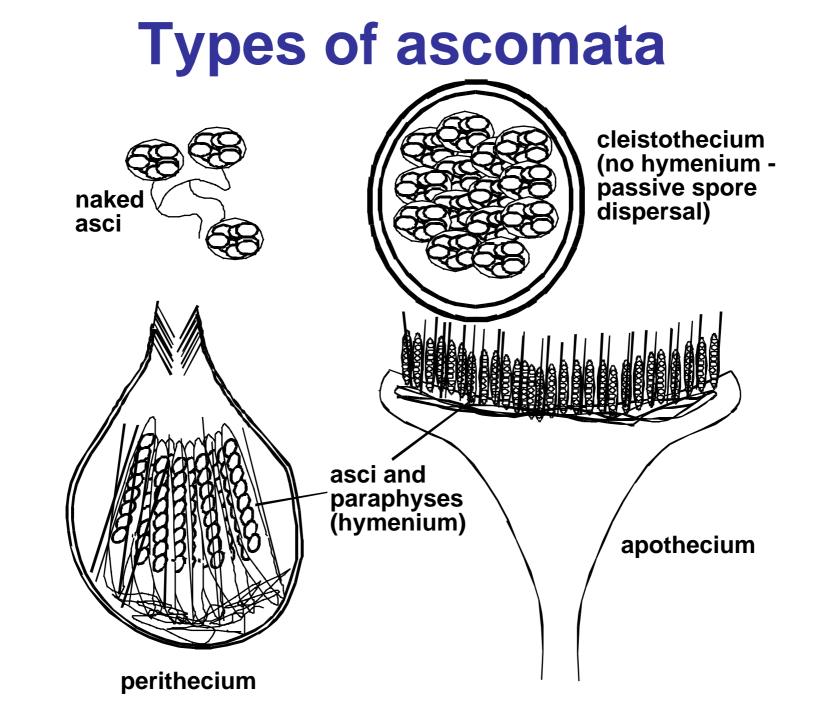
- Sexual stages associated with
 Aspergillus
- The impact (and lack thereof) of the sexual stage on population biology
- What does it mean?

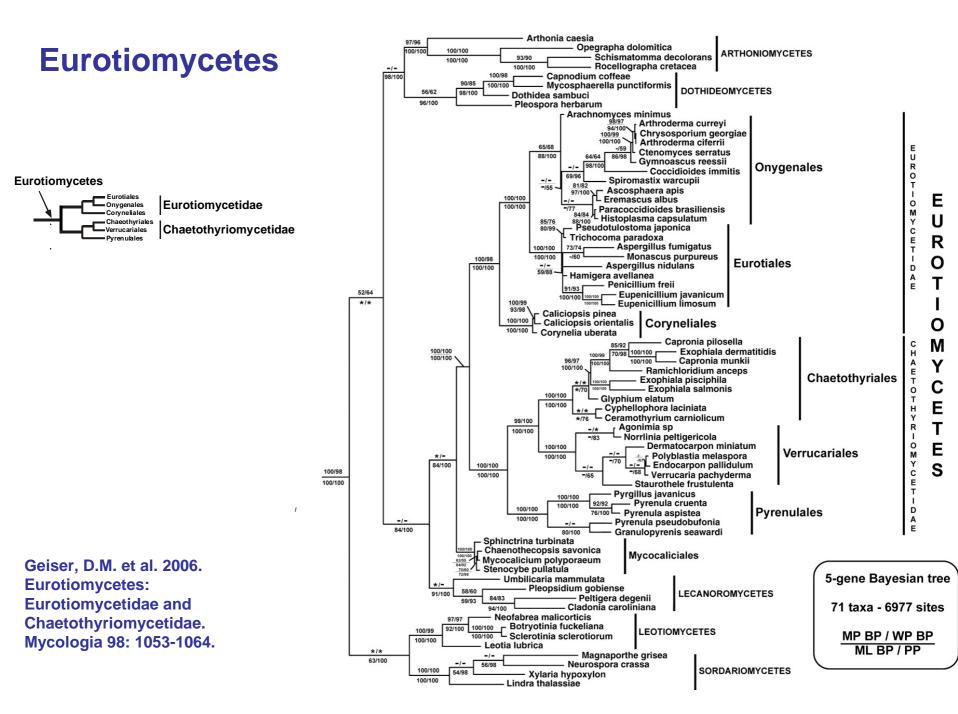
Characteristics of clinically important *Aspergillus* spp.

- Ability to grow at 37C
- Commonly encountered by humans
- Prolific sporulators

• Nothing here about sexual stages

Approx. 1/3 Aspergillus species has a known sexual stage


Aspergillus (427 names)


Petromyces (3) Neopetromyces (1) Neosartorya (32, 3 heterothallic) Chaetosartorya (4) *Emericella* (34, 1 heterothallic) Fennellia (3) Eurotium (69) Warcupiella (1) Hemicarpenteles (4) Neocarpenteles (1)

148 homothallic 4 heterothallic

Heterothallics rare; virtually all have a conidial stage

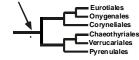




Eurotiomycetes

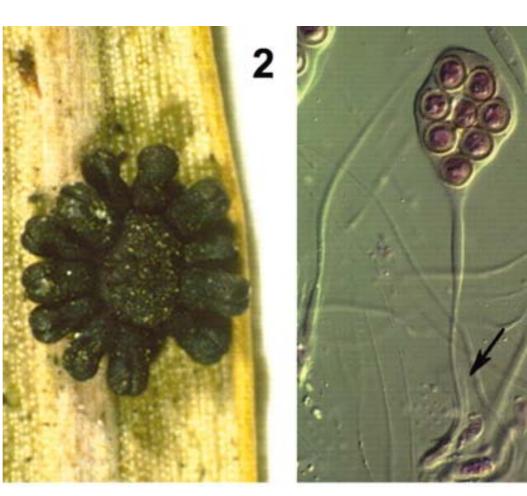
Eurotiomycetes

PENN<u>State</u>


Aspergillus species have typical Eurotialean sexual characters

- <u>Gametangia</u>: Usually undifferentiated, composed of simple coiled hyphae
- <u>Ascospores</u>: Lens-shaped, single-celled, usually with equatorial rings
- <u>Asci:</u> Round, prototunicate (i.e., breaking down at maturity to release ascospores)
- <u>Ascomata</u>: Asci scattered within a cleistothecium (closed ascoma), with no hymenium and no interascal elements (i.e., paraphyses and periphyses). Cleistothecial walls composed of a variety of different tissue types depending on the genus
- <u>Stroma</u>: Cleistothecia may or may not be borne in developmentally distinct stromatic tissue (e.g., hülle cells, "sclerotia")

Coryneliales: The Missing Link to Eurotiomycetes?

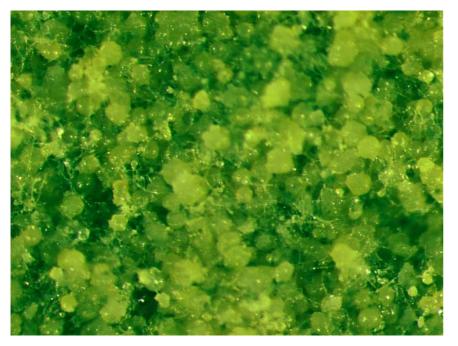

Eurotiomycetes

Eurotiomycetidae

Geiser, D.M. et al. 2006. Eurotiomycetes: Eurotiomycetidae and Chaetothyriomycetidae. Mycologia 98: 1053-1064.

Peter Johnston

Giant Eurotialean Ascomata!

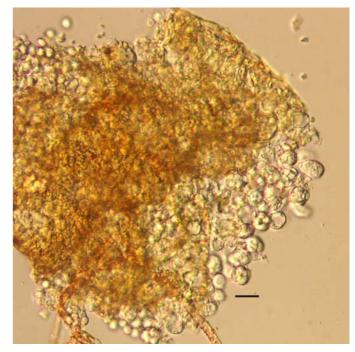

Trichocoma -- Has biverticillate *Penicillium* anamorph

Elaphomyces -- "Hart's truffle" Giant, stromatic cleistothecia. Ectomycorrhizal

QuickTime[™] and a decompressor are needed to see this picture. Geiser, D.M. et al. 2006. Eurotiomycetes: Eurotiomycetidae and Chaetothyriomycetidae. Mycologia 98: 1053-1064.

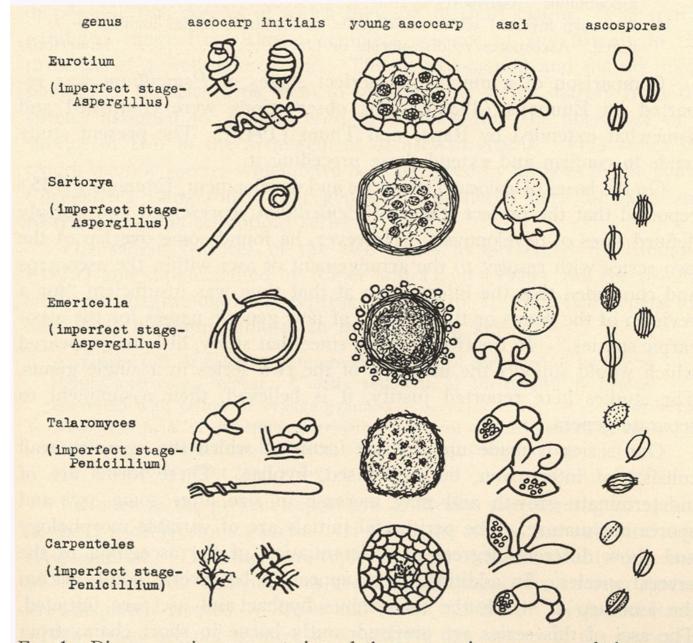
Pseudotulostom Terry Henkel

Sexual characters associated with Aspergillus



Eurotium cleistothecia under dissecting scope

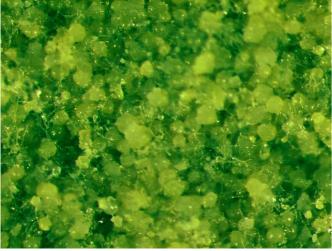
Globose *Eurotium* asci



Ruptured *Eurotium* cleistothecium; Bar = $10 \ \mu m$

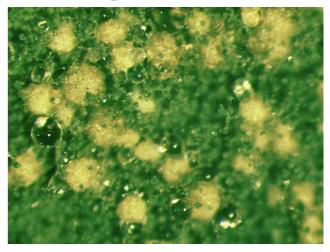
Lenticular *Eurotium* ascospore with two equatorial rings

Penicillium. Mycologia 47: 669-687



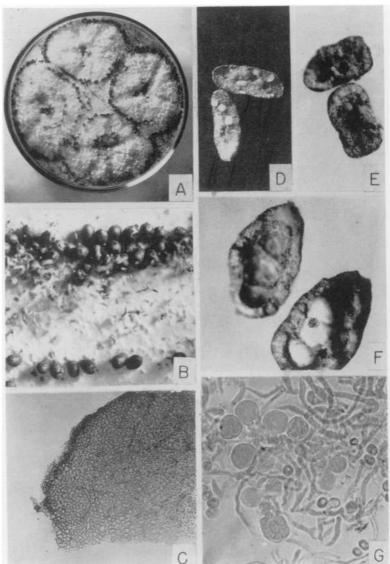
Benjamin, C.R. 1955.

Ascocarps of Aspergillus and


FIG. 1. Diagrammatic representation of the ascocarpic structures of the genera possessing Aspergillus and Penicillium conidial stages.

Some sexual genera associated with Aspergillus

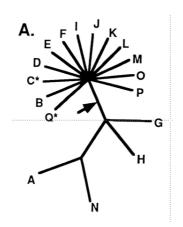
Eurotium sp. Single-layered cleistothecium composed of flattened cells


Emericella nidulans: Cleistothecium surrounded by hülle cells

Neosartorya fischeri: Cleistothecial wall composed of flattened hyphae

Petromyces: cryptic sexual stage of Aspergillus alliaceus

'Sclerotia' turn out to be ascomata!

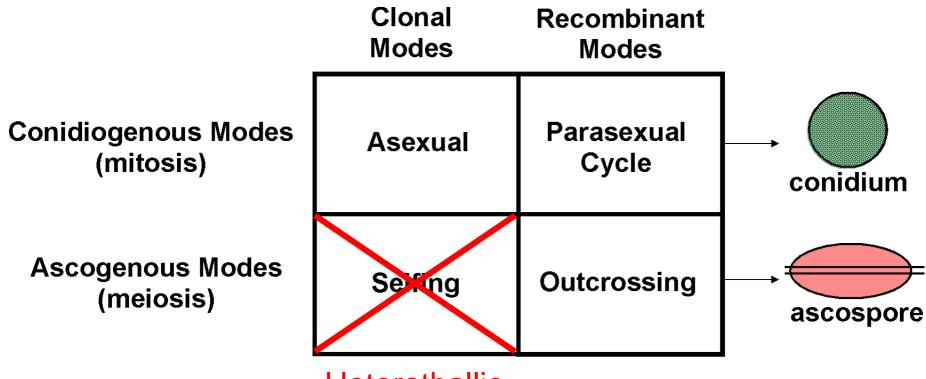

Fennell, D.I. and Warcup, J.H. 1959. Ascocarps of *Aspergillus alliaceus*. Mycologia 51: 409-415

Sclerotial species of Aspergillus with no known sexual stage

- Aspergillus niger
- Aspergillus ochraceus
- Aspergillus flavus (population genetic evidence for recombination exists)

Geiser et al. 1998. PNAS USA 95: 388-393

QuickTime™ and a decompressor are needed to see this picture.



Why is there so much homothallism in *Aspergillus*?

- Heterothallism: forces outcrossing
- <u>Homothallism</u>: allows for selfing (which is apomictic in *Aspergillus* since it is haploid)

Genetic Consequences of Reproductive Mode

PENNSTATE

Heterothallic

Geiser et al. 1994. PNAS USA 91: 2349-2352.

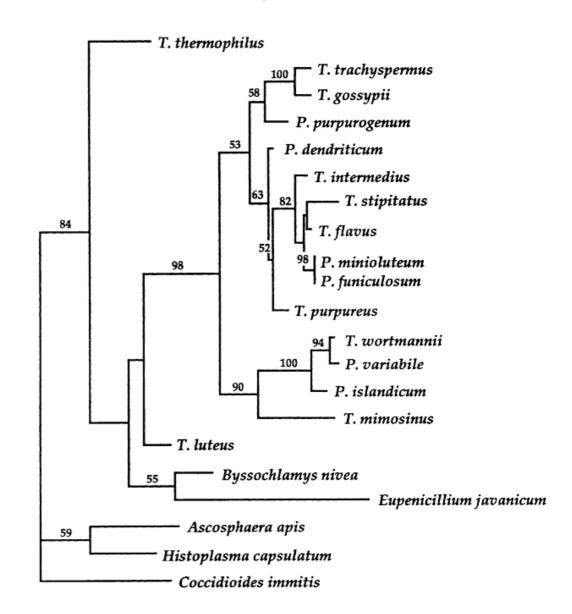
Are homothallics more clonal/less recombinant than heterothallics?

- As a rule, NO!
- Aspergillus (Emericella) nidulans: homothallic; low levels of linkage disequilibrium among loci (Geiser et al. 1994)
- Fusarium graminearum: homothallic; highly recombinant populations
- Homothallics may be *more* recombinant in populations than heterothallics!
- Ecological advantage of homothallism: gain benefits of ascospore with no need to find a mate
- PENNSTATE Ascospores are often resistant to harsh treatment
 Neosartorya, Eurotium

Why is there so much homothallism in *Aspergillus*?

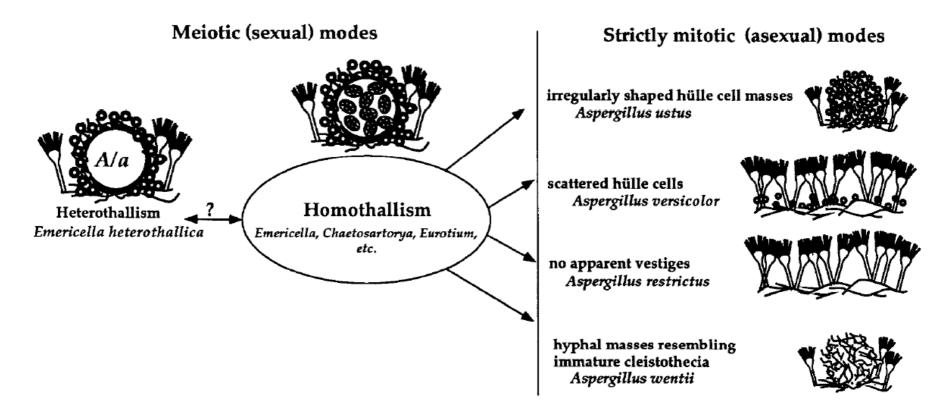
- The ascospore probably tends to have a major ecological role
- Homothallism allows constitutive ascospore production

• But maybe there is more heterothallism than people thought!



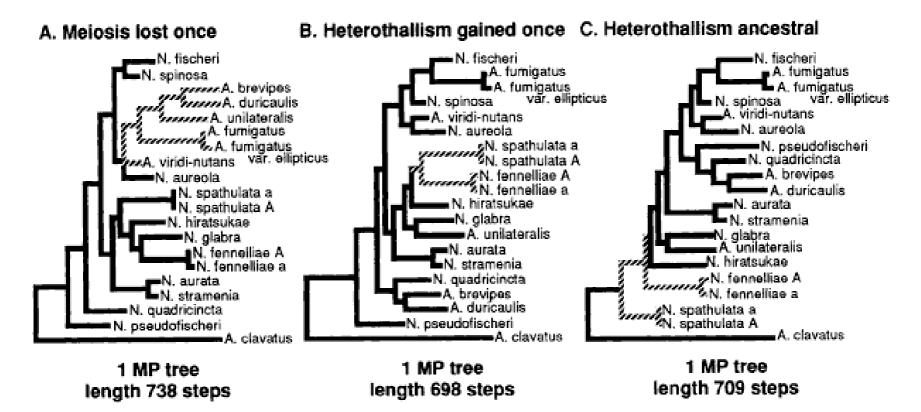
Loss of sexual stages?

LoBuglio, K.F. et al. 1993. Phylogenetic analysis of two ribosomal DNA regions indicates multiple independent losses of the sexual *Talaromyces* state among asexual *Penicillium* species in subgenus *Biverticillium*. Mycologia 85: 592-604.


Are these asexual lineages that go extinct due to Mueller's Ratchet?

PENNSTATE

Loss of sexual stages?


Model for the loss of meiosis in Aspergillus

Geiser et al. 1996. Loss of meiosis in Aspergillus. Mol. Biol. Evol. 13: 809-817.

Was heterothallism derived from homothallism in *Aspergillus*?

Geiser et al. 1998. Evolutionary relationships in *Aspergillus* section *Fumigati* inferred from partial betatubulin and hydrophobin DNA sequences. Mycologia 90: 831-845.

Molecular basis of homothallism in *Cochliobolus*

Homothallism is clearly derived from heterothallic ancestors -- is *Aspergillus* different?

Yun et al. 1999. Evolution of the fungal self-fertile reproductive lifestyle from self-sterile ancestors. PNAS USA 96: 5592-5597. QuickTime™ and a decompressor are needed to see this picture.

Countless postdocs wasted countless hours trying to isolate MAT idiomorphs in *Aspergillus* via PCR and hybridization

What we really needed were some complete Aspergillus genome sequences!

Aspergillus fumigatus: appears to be heterothallic!

QuickTime[™] and a decompressor are needed to see this picture.

Paoletti, M. et al. 2005. Evidence for sexuality in the opportunistic fungal pathogen *Aspergillus fumigatus*. Current Biology 15: 1242-1248. Pringle, A. et al. 2005. Cryptic speciation in the cosmopolitan and clonal human pathogenic fungus *Aspergillus fumigatus*. Evolution 59: 1886-1899.

If *A. fumigatus* is heterothallic, then why has no one seen a sexual stage?

- Isolates of opposite mating-type must be paired, and the correct conditions for sexual development must be employed
- This takes patience and careful observation (it isn't a coincidence that two of the known heterothallic Aspergillus species were described by the same person (J. Kwon-Chung)

Hypotheses about sexual and asexual modes in *Aspergillus*

- Perhaps most or even all Aspergillus species with no known sexual stage are actually heterothallic. Paul Dyer's lab is pursuing this.
- Evidence for historical recombination (random association of loci) is generally found in 'asexual' fungi. Never assume a fungus is clonal without population genetic evidence.
- As a general rule, homothallism is probably derived from heterothallism in *Aspergillus*, as it is in other ascomycetes.
- The relative abundance of homothallic *Aspergilli* is probably more about ecology than genetics.

So who cares about Aspergillus sex?

- Aspergillus species known to be meiotic (homothallic) tend to be minor players clinically
 - As a general rule, there is a tradeoff: more ascospores means fewer conidia
- Clinicians should be aware of (or more realistically, have access to information about) sexual stages, but the sexual stage itself probably doesn't have much clinical relevance, other than as a morphological character useful in identification

Recombination is important

- Recombinant organisms are a tougher target
 - Fungicide resistance
 - Novel virulence
- The recombinant/clonal population dynamics of pathogenic fungi are important to consider...but one cannot assume relative levels of recombination/clonality based on the presence/absence of a sexual stage

Thanks to...

- Bill Timberlake, Mike Arnold, John Taylor
- NSF-sponsored All Fungal Tree of Life and Deep Hypha grants: esp. Meredith Blackwell, Joey Spatafora, Cécile Guiedan, Conrad Schoch
- NSF, USDA/NRI, Bausch & Lomb for their support

Sexual stages and names

- A special provision in the International Code of Botanical Nomenclature allows pleiomorphic fungi to have two names:
 - Anamorph (Phylum Deuteromycota)
 - Teleomorph (Phylum Ascomycota)
- The teleomorph name takes precedence over the anamorph as assigned to the whole fungus (i.e., the Holomorph)
- As strictly anamorphic fungi (e.g., *Aspergillus fumigatus*) are connected to their correct teleomorphs (*Neosartorya*), they can retain both names, but the teleomorph name takes precedence.