How a fungus shapes biotechnology: 100 years of Aspergillus niger research.

Author: 

Cairns TC, Nai C, Meyer V.
Fungal Biol Biotechnol. 2018 May 24;5:13.

Abstract: 

In 1917, a food chemist named James Currie made a promising discovery: any strain of the filamentous mould Aspergillus niger would produce high concentrations of citric acid when grown in sugar medium. This tricarboxylic acid, which we now know is an intermediate of the Krebs cycle, had previously been extracted from citrus fruits for applications in food and beverage production. Two years after Currie's discovery, industrial-level production using A. niger began, the biochemical fermentation industry started to flourish, and industrial biotechnology was born. A century later, citric acid production using this mould is a multi-billion dollar industry, with A. niger additionally producing a diverse range of proteins, enzymes and secondary metabolites. In this review, we assess main developments in the field of A. niger biology over the last 100 years and highlight scientific breakthroughs and discoveries which were influential for both basic and applied fungal research in and outside the A. niger community. We give special focus to two developments of the last decade: systems biology and genome editing. We also summarize the current international A. niger research community, and end by speculating on the future of fundamental research on this fascinating fungus and its exploitation in industrial biotechnology.

KEYWORDS:

Aspergillus niger; Biotechnology; Citric acid; Genome editing; Industrial biology; Systems biology