High Azole Resistance in Aspergillus fumigatus Isolates from Strawberry Fields, China, 2018.

Author: 

Chen Y, Dong F, Zhao J, Fan H, Qin C, Li R, Verweij PE, Zheng Y, Han L.
Emerg Infect Dis. 2020 Jan;26(1):81-89.

Abstract: 

In 2018, we conducted a cross-sectional study to investigate azole resistance in environmental Aspergillus fumigatus isolates obtained from different agricultural fields in China. Using 63 soil cores, we cultured for azole-resistant A. fumigatus and characterized isolates by their cyp51A gene type, short tandem repeat genotype, and mating type. Of 206 A. fumigatus isolates, 21 (10.2%) were azole resistant. Nineteen of 21 had mutations in their cyp51A gene (5 TR34/L98H, 8 TR34/L98H/S297T/F495I, 6 TR46/Y121F/T289A). Eighteen were cultured from soil samples acquired from strawberry fields, suggesting this soil type is a potential hotspot for azole resistance selection. Twenty resistant isolates were mating type MAT1-1, suggesting asexual sporulation contributed to their evolution. Prochloraz, difenoconazole, and tebuconazole were the most frequently detected fungicides in soil samples with azole-resistant fungus. Our study results suggest that managing the fungicides used in agriculture will help contain the problem of antifungal drug resistance in clinics.