Chemical induction of silent biosynthetic pathway transcription in Aspergillus niger

Author:

Fisch KM, Gillaspy AF, Gipson M, Henrikson JC, Hoover AR, Jackson L, Najar FZ, Wägele H, Cichewicz RH

Date: 30 June 2009

Abstract:

Manipulation of the fungal epigenome is hypothesized to be an effective method for accessing natural products from silent biosynthetic pathways. A library of epigenetic modifiers was tested using the fungus Aspergillus niger to determine the impact of small-molecule inhibitors on reversing the transcriptional suppression of biosynthetic genes involved in polyketide (PKS), non-ribosomal peptide (NRPS), and hybrid PKS-NRPS (HPN) production. Examination of expressed sequence tag libraries from A. niger demonstrated that >70% of its PKS-, NRPS-, and HPN-encoding gene clusters were transcriptionally suppressed under standard laboratory culture conditions. Using a chemical epigenetic methodology, we showed that treatment of A. niger with suberoylanilide hydroxamic acid and 5-azacytidine led to the transcriptional upregulation of many secondary-metabolite-encoding biosynthetic gene clusters. Chemical epigenetic modifiers exhibited positional biases for upregulating chromosomally distal gene clusters. In addition, a phylogenetic-based preference was noted in the upregulation of reducing clade I PKS gene clusters, while reducing clade IV PKS gene clusters were largely unaffected. Manipulating epigenetic features in fungi is a powerful method for accessing the products of silent biosynthetic pathways. Moreover, this approach can be readily incorporated into modern microbial screening operations.

Link to DOI

Download the full article (Disclaimer)

This manuscript library of ~16,000 articles (1729-2024) related to Aspergillus and aspergillosis is intended for individual study only, and is provided as contribution to global understanding of the topic. Please refer to the publisher’s guidance about any other usage.