In vitro cross-resistance between azoles in *Aspergillus fumigatus*: a reason for concern in the clinic?

Emilia Mellado
Mycology Reference Laboratory
Centro Nacional Microbiologia
Instituto de Salud Carlos III (ISCIII)
Majadahonda, Madrid, Spain
INVASIVE ASPERGILLLOSIS (IA)

- Immunocompromised patient
- Not easy to diagnose and/or treat
- High incidence (50 %) and Higher mortality rate (%)
- Treatment: amphotericin B, azoles and Echinocandins
- Triazoles seem to be key drugs in IA: Voriconazole
INVASIVE ASPERGILLOSIS (IA)

- Immunocompromised patient
- Not easy to diagnose and/or treat
- High mortality rate (38-80 %)
- Treatment: amphotericin B, azoles and Echinocandins
- Triazoles seem to be key drugs in IA: voriconazole

1.- The fungistatic nature of azole drugs have risen a considerable concern in relation to secondary resistance development.

2.- *Aspergillus fumigatus* azole resistance was first detected in 1997

3.- The underlying molecular mechanisms of resistance have been thoroughly studied and characterized.

4.- *In vitro* cross-resistance between azole drugs do exist

5.- Resistance Patterns:

 Depends on specific mutations in the azole target: **Cyp51A**
Azole Resistance Mechanisms in *A. fumigatus*

- **Multiple Triazole Resistance**
- **LTR**
- **LTR**
- **TR**
- **TR**
- **L98H**
- **G54 (Promoter)**
- **G138**
- **M220**
- **G448**
- **Cyp51A**
- **3'UTR**
- **g77a**

MAR: Membrane Anchoring Region

HBR: Hemo Binding Region

Azole Resistance Mechanisms in *A. fumigatus*

Multiple Triazole Resistance

- **L98H**
- **G138**
- **G448**

Several HOT-SPOT

- **MAR: Membrane Anchoring Region**
- **F-Helix**
- **G-Helix**
- **R-ITC**
- **R-POS**
- **R-ITC, and High MICs to POS, VRC and RVC**
- **R-VRC**
- **R-RVC**
- **HBR Hemo Binding Region**
- **3’UTR**
- **g77a**

Promoter

Cyp51A

G54
Azole Resistance Mechanisms in *A. fumigatus*

- **Cyp51A**
- **MAR: Membrane Anchoring Region**
- **G54**
- **Promoter**
- **R-ITC**
- **R-POS**
- **HBR Hemo Binding Region**
- **3´UTR**
- **G54R**
- **G54V**
- **G54W**
- **G54E**
Azole Resistance Mechanisms in *A. fumigatus*

Cyp51A

MAR: Membrane Anchoring Region

G54

R-ITC, R-POS

HBR Hemo Binding Region

Cyp51A Promoter

3'UTR

R-ITC, and High MICs to POS, VRC, and RVC

M220

F-Helix

G-Helix

M220V

M220T

M220I

M220D
Azole Resistance Mechanisms in *A. fumigatus*

- **L98H** mutation
- **Promoter**
- **F-Helix**
- **G-Helix**
- **Cyp51A**
- **3’UTR**
- **Multiple Triazole Resistance**

Images and Diagrams:
- A diagram showing the localization of resistance mechanisms involving the L98H mutation in the promoter region, connected to F-Helix and G-Helix, leading to Cyp51A and the 3’UTR.
Azole Resistance Mechanisms in *A. fumigatus*

F-Helix G-Helix

- **L98H**
- **Promoter**
- **Multiple Triazole Resistance**

Cyp51A

3’UTR

Multiple Triazole Resistance

- **LTR LTR**
- **Promoter**
- **G138**
- **Cyp51A**
- **3’UTR**
- **g77a**
Azole Resistance Mechanisms in *A. fumigatus*

Promoter

1. **L98H**
2. **G138**

3’UTR

Multiple Triazole Resistance
Azole Resistance Mechanisms in *A. fumigatus*

Emergence of Azole Resistance in Aspergillus fumigatus and Spread of a Single Resistance Mechanism

Eveline Snelders\(^1,2\), Henrich A. L. van der Lee\(^1,2\), Judith Kuijpers\(^1,2\), Anthonius J. M. M. Rijs\(^1,2\), János Varga\(^3,4\), Robert A. Samson\(^3\), Emilia Mellado\(^5\), A. Rogier T. Donders\(^6\), Willem J. G. Melchers\(^1,2\), Paul E. Verweij\(^1,2^*\)
NEW TRENDS ……..

- Now the more frequently reported R mechanism
- In the Netherlands can go up to 6-12%
- Just reported in UK
- It has been described in azole naive patients
- Probably related to the use of antifungals in the field
- still need to be probed
Frequency and Evolution of Azole Resistance in *Aspergillus fumigatus* Associated with Treatment Failure¹

Susan J. Howard, Dasa Cesar, Michael J. Anderson, Ahmed Albarrag, Matthew C. Fisher, Alessandro C. Pasqualotto, Michel Laverdure, Maiken C. Arendrup, David S. Perlin, and David W. Denning

Emerging Infectious Diseases • www.cdc.gov/eid • Vol. 15, No. 7, July 2009

- Study made in UK, Manchester
- Clinical collection 519 *A. fumigatus*
- 1st resistant isolate in 1999
- before 2004 - 1 %
- After 2004 - 8 %
Mutations found in Cyp51A

New mutations:

Frequency and Evolution of Azole Resistance in *Aspergillus fumigatus* Associated with Treatment Failure¹

Susan J. Howard, Dasa Cerar, Michael J. Anderson, Ahmed Albarrag, Matthew C. Fisher, Alessandro C. Pasqualotto, Michel Laverdure, Maiken C. Arendrup, David S. Perlin, and David W. Denning

Emerging Infectious Diseases • www.cdc.gov/eid • Vol. 15, No. 7, July 2009

- Study made in UK, Manchester
- Clinical collection 519 *A. fumigatus*
- 1st resistant isolate in 1999
- Before 2004 - 1 %
- After 2004 - 8 %

- Differences.......
- Most patients under azole treatment
- Opposite to mainly one single mechanism
- Multiple *cyp51A* mutations (18 aa)
AZOLE RESISTANCE......... PROBLEM?

- Whatever the resistance mechanism found:
 - Might be influenced by the country under study
 - by the sampling type and size
 - the underlying disease of patient under study

The important facts are:

- Azole Resistance seems to be EMERGING

- towards multiple Azole Cross-resistance
AZOLE RESISTANCE........ PROBLEM?

- Whatever the resistance mechanism found:
 - Might be influenced by the country under study
 - by the sampling type and size
 - the underlying disease of patient under study

The important facts are:

- Azole Resistance seems to be EMERGING

- towards multiple Azole Cross-resistance

Does this has any meaning to clinicians?
- AST standardization:

 Europe (EUCAST)
 United States (CLSI).
Mould Antifungal Susceptibility Testing (AST)

- AST standardization:

 Europe (EUCAST)
 United States (CLSI).

The availability of *A. fumigatus* azole resistant strains with known resistance mechanisms have been used to define:

- wild-type populations
- epidemiological cut-offs
- cross-resistance between azole drugs.
A. fumigatus: MICs distribution forazole drugs

Itraconazole

Voriconazole

Ravuconazole

Posaconazole
Aspergillus fumigatus: MICs distribution for azole drugs

Itraconazole seems to be the guide for azole resistance detection. Azole cross-resistance depends on the resistance mechanism.
Epidemiological Cutoffs and Cross-Resistance to Azole Drugs in *Aspergillus fumigatus*

Juan Luis Rodríguez-Tudela,* Laura Alcazar-Fuoli, Emilia Mellado, Ana Alastruey-Izquierdo, Araceli Monzon, and Manuel Cuenca-Estrella

Servicio de Micología, Centro Nacional de Microbiología, Instituto de Salud Carlos III, Majadahonda, Spain

EUCAST methodology

Epidemiological cutoff for the wild-type populations

Itraconazole and/or voriconazole \(\leq 1 \text{ mg/L} \)

Posaconazole \(\leq 0.25 \text{ mg/L} \)
Wild-Type MIC Distribution and Epidemiological Cutoff Values for
Aspergillus fumigatus and Three Triazoles as Determined by the
Clinical and Laboratory Standards Institute Broth
Microdilution Methods

M. A. Pfaffer,1,2* D. J. Diekema,1 M. A. Ghannoum,3 J. H. Rex,4 B. D. Alexander,5 D. Andes,6
S. D. Brown,7 V. Chaturvedi,8 A. Espinel-Ingroff,9 C. L. Fowler,10 E. M. Johnson,11
C. C. Knapp,12 M. R. Molyl13 L. Ostrosky-Zeichner,14 D. J. Sheehan,15
and T. J. Walsh16 for the Clinical and Laboratory Standards
Institute Antifungal Testing Subcommittee

Table 1. MIC distribution and ECVs for azoles and A. fumigatus

<table>
<thead>
<tr>
<th>Antifungal agent</th>
<th>No. of isolates tested</th>
<th>MIC (μg/mL)</th>
<th>ECV (%)</th>
<th>No. of isolates tested</th>
<th>MIC (μg/mL)</th>
<th>ECV (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>Range</td>
<td>Mode</td>
<td></td>
<td>Range</td>
<td>Mode</td>
</tr>
<tr>
<td>Itraconazole</td>
<td>637</td>
<td>0.015–2</td>
<td>0.25</td>
<td>1 (99.8)</td>
<td>393</td>
<td>0.06–2</td>
</tr>
<tr>
<td>Posaconazole</td>
<td>637</td>
<td>0.06–1</td>
<td>0.03</td>
<td>0.25 (99.8)</td>
<td>393</td>
<td>0.015–2</td>
</tr>
<tr>
<td>Voriconazole</td>
<td>637</td>
<td>0.12–4</td>
<td>0.25</td>
<td>1 (99.2)</td>
<td>393</td>
<td>0.06–2</td>
</tr>
</tbody>
</table>

*Values in parentheses represent the percentage of MICs ≤ ECV.
Itraconazole and/or voriconazole $\leq 1 \text{ mg/L}$

Posaconazole $\leq 0.25 \text{ mg/L}$
Setting Clinical Breakpoints

- difficult.....
- controversial......!

- Microbiological information
- Clinical data - success
 - failure
- Animal models, to confirm clinical observations
Setting Clinical Breakpoints

- difficult....
- controversial......!

- Microbiological information
- Clinical data - success
 - failure
- Animal models, to confirm clinical observations

Proposed Interpretative Breakpoints

<table>
<thead>
<tr>
<th>Drug</th>
<th>< 2 mg/L (S)</th>
<th>2 mg/L (I)</th>
<th>> 2 mg/L (R)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Itraconazole</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Voriconazole</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Posaconazole</td>
<td>< 0.25 (S)</td>
<td>0.25-0.5 (I)</td>
<td>> 0.5 (R)</td>
</tr>
</tbody>
</table>

Will That Change the CLINICAL OUTCOME?

- **Influenced by the fungus susceptibility**

 In general, there is the agreement that MICs correlates better with clinical resistance than with susceptibility prediction.

- **other factors:**
 - Azole drugs pharmacokinetics
 - doses and drugs timing
 - drugs interaction
 - host response.
- we need more Epidemiological studies:
 - local epidemiology

- testing new antifungals in development:
 - Isavuconazole
 - Albaconazole

- they are azole derivatives:
 - check cross-resistance with them (expected?)

- Development New antifungals
- Discovery of New targets
- Combined therapy (complementary targets)