Clinical Risk Factors for Invasive Aspergillosis

February 5, 2010

John W. Baddley, MD, MSPH
University of Alabama at Birmingham, USA
Birmingham VAMC
jbaddley@uab.edu
Risk Factors for IA

Risk factor: variable associated with an chance of developing something

Types of risk factors for IA:
- **Clinical**: host-related, co-morbidities, transplant variables
- **Biologic**: iron overload, hyperglycemia
- **Environmental**
- **Host/pathogen interaction**

Identifying clinical risk factors for IA:
- **Clinical Trials**
- Cohort (usually retrospective)
- Case-control studies
- Case series
Risk of Invasive Aspergillosis*

<table>
<thead>
<tr>
<th>Group</th>
<th>Risk (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Hematopoietic Stem Cell Transplants</td>
<td>5-10</td>
</tr>
<tr>
<td>Solid Organ Transplants</td>
<td>10-15</td>
</tr>
<tr>
<td>Hematologic malignancies</td>
<td>5-25</td>
</tr>
<tr>
<td>Chronic Obstructive Pulmonary Disease</td>
<td>1-9</td>
</tr>
<tr>
<td>HIV/AIDS</td>
<td>0-5</td>
</tr>
<tr>
<td>Other Causes (Trauma, ICU, steroids)</td>
<td>4-7</td>
</tr>
<tr>
<td>Other immunosuppression</td>
<td>0-??</td>
</tr>
</tbody>
</table>

* Risk defined as cumulative incidence per year

Adapted from Maschmeyer et al., Drugs 2007;67:1567-1601
HSCT Risk Factors

- Age
- Underlying disease
- Stem cell source
- T-cell depleted products
- Corticosteroids (dose, duration)
- Conditioning regimen
- GVHD presence and treatment
- Neutropenia (pre- and post-engraftment)
- Lymphopenia
- CMV disease
- Iron overload
- Elevated ferritin
- Previous IA
- Respiratory viruses
- Antifungal prophylaxis

Marr et al. Blood 2002;100:4358
Maschmeyer et al., Drugs 2007;67:1567-1601.
Garcia-Vidal et al., CID 2008;47:1041-50
Epidemiology of invasive mold infections in allogeneic stem cell transplant recipients: biological risk factors for infection according to time after transplantation.

Garcia-Vidal et al., Clin Infect Dis 2008:47:1041-50

- Objectives:
 1) Analyze risk factors for IMI after HSCT
 2) Differentiate risk factors for early vs. late IMI
 3) Evaluate biological risk factors

- 1248 HSCT patients evaluated (1998-2002)
- 163 IMI cases, 142 (87%) with IA

Garcia-Vidal et al., CID 2008;47:1041-50.
Garcia-Vidal et al.

Risk Factors (for IMI) per multivariable analysis:

- Older age
- CMV disease
- Respiratory virus infection (influenza, parainfluenza)
- Severe acute GVHD
- Cell-line cytopenias
- High frequency of blood transfusions
Figure 3. Timing of invasive mold infections (IMIs). Early IMI refers to infection diagnosed from day 0 through day 40; late IMI refers to infection diagnosed from day 41 through day 100; very late IMI refers to infection diagnosed after day 100.
Garcia-Vidal et al.

Early (1-39)
- Unrelated donor
- HLA mismatch
- ATG
- CMV disease
- Transfusion
- Corticosteroids
- Hyperglycemia
- Lymphopenia
- Ferritin level

Late (40-100)
- Sex (female)
- Age
- CMV disease
- Transfusion
- Acute GVHD
- Corticosteroids

Garcia-Vidal et al., CID 2008;47:1041-50.
WELCOME TO ROME!
Lower respiratory tract infections increase risk of aspergillosis after a reduced-intensity allogeneic hematopoietic SCT

Martino et al, Bone Marrow Transplantation 2009 44;749

- Analyzed 219 patients with reduced intensity conditioning (fludarabine + BU or melphalan) transplanted between 1997-2007.
- Prospectively monitored patients for IA, viral infections
- 4-year cumulative incidence of IA was 15%
- 27 patients developed IA
- **Risk factors** (multivariable analysis):
 - Steroid therapy for moderate-to-severe GVHD
 - CMV disease
 - **Viral lower respiratory tract infection**
 (HR 4.3, 95% CI 2-9.4)
- **Viruses:** influenza A/B, parainfluenza virus, RSV, metapneumovirus, adenovirus
Increased bone marrow iron stores is an independent risk factor for IA in patients with high-risk hematologic malignancies and recipients of allogeneic hematopoietic stem cell transplantation. Kontoyiannis et al., Cancer 2007; 110:1303-6.

- Compared 33 patients with IA and 33 high-risk patients without IFI (9/2002-3/2003)
- Calculated and compared bone marrow iron stores and other characteristics
- Patients similar, except APACHE II greater in cases
- 23 (70%) cases, compared with 6 (18%) controls had elevated iron stores (p<0.001)
- Increased BMIS and APACHE II were independent predictors of IA (logistic regression)
Cancer Patients

- Neutropenia
- Type of cancer
- Corticosteroid use
- Chemotherapy

Maschmeyer et al., Drugs 2007;67:1567-1601
Rubio et al., J Pediatric Hematol Oncol 2009; 31:642-646.
Clinical characteristics of 45 patients with invasive aspergillosis. Restrospective analysis of 1711 lung cancer cases.

Yan et al., Cancer 2009;115:5018-25.

- All lung cancer patients with IPA seen during 2000-2007 were evaluated
- 45 (2.63%) cases of IPA in 1711 lung cancer patients
- **Risk Factors:**
 - Stage IV cancer
 - Chemotherapy (preceding month)
 - Corticosteroid therapy > 3 days
Solid Organ Transplants

- **Lung**: Single lung, rejection, reperfusion injury, *Aspergillus* colonization, anastamotic site ischemia, hypogammaglobulinemia, CMV, cystic fibrosis(?), antifungal prophylaxis(?)

- **Liver**: Poor allograft function, pre-transplant hepatic failure, Re-transplantation, renal insufficiency, dialysis, high transfusion requirement, iron overload, steroids, ICU stay

- **Heart**: ?

- **Kidney or Kidney/Pancreas**: ?

Silveira and Husain, Medical Mycology 2007;45:305-20.
IA in SOTs

Expressed as IA cases per 100 patients transplanted

TRANSNET, unpublished data
Permission from Tom Chiller and Pete Pappas
Risk factors for invasive aspergillosis in solid organ transplant recipients: a case-control study
Gavalda et al., Clinical Infectious Diseases 2005:41:52-9.

- Retrospective case-control study of 156 cases of proven/probable IA, matched to 312 controls
- 11 Spanish centers (REISTRA), total of 11,014 SOT patients
- Study period: transplant program start date to 2001

- **IA Cases:**
 - Liver 80 (51.3%)
 - Heart 47 (30.1%)
 - Lung 17 (10.9%)
 - Kidney 10 (6.4%)
 - Kidney/Pancreas 2 (1.3%)
<table>
<thead>
<tr>
<th>Early (<3 months)</th>
<th>Late (>3 months)</th>
</tr>
</thead>
<tbody>
<tr>
<td>CMV mismatch</td>
<td>Age > 50 years</td>
</tr>
<tr>
<td>ICU stay</td>
<td>Renal failure</td>
</tr>
<tr>
<td>Renal failure</td>
<td>Immunosuppressive use</td>
</tr>
<tr>
<td>Hepatic failure</td>
<td>> 1 bacterial infection</td>
</tr>
<tr>
<td>Hemodialysis</td>
<td>Chronic-graft rejection</td>
</tr>
<tr>
<td>>1 bacterial infection</td>
<td>Immunosuppression-related neoplasm</td>
</tr>
<tr>
<td>CMV disease</td>
<td></td>
</tr>
</tbody>
</table>
IA in the ICU

- Potentially emerging problem (247,000 Google hits 1/15; 248,000 hits 2/1)
- Incidence of up to 6% in Medical ICUs
- Non-traditional groups at risk:
 - Corticosteroid use
 - COPD
 - Cirrhosis
 - HIV
 - Malnutrition
 - Prolonged antibiotic use

Meerssemen et al., CID 2007:45:205-16
IA in COPD Patients

• Increasing reports of the importance of COPD as a risk factor or an underlying co-morbidity in patients with IA
• It is estimated that up to 10% of cases of IA occur in patients with COPD and up to 5% of patients with COPD have IA.
• Mortality in COPD patients with IA ranges from 30-100%
• Problem: certainty of diagnosis of IA
• Risk factors- few data:
 - Corticosteroid treatment (daily oral doses of >20 mg of prednisone)
 - Previous antibiotic use
 - Late-stage COPD
 - Viral infection
 - Inhaled steroids

Pulmonary aspergillosis in patients with chronic obstructive pulmonary disease: incidence, risk factors, and outcome.
Guinea et al. Clinical Microbiology and Infection 2009

- Retrospective study of COPD admissions who had isolation of *Aspergillus* from a pulmonary sample (2000-2007)
- 14,618 with COPD, 239 of whom had positive *Aspergillus* respiratory tract cultures
- 53 cases of probable IA identified (3.6 cases/1000 COPD admissions)
- IPA present in 22% of cases of COPD with positive *Aspergillus* cultures
IA in COPD Patients

Guinea et al, *Clin Microbiol Infect* 2009
Risk Factors for IA in COPD

<table>
<thead>
<tr>
<th>Factor</th>
<th>OR</th>
<th>95% CI</th>
</tr>
</thead>
<tbody>
<tr>
<td>ICU admission</td>
<td>2.4</td>
<td>1.09, 5.29</td>
</tr>
<tr>
<td>Steroids(^1)</td>
<td>2.98</td>
<td>1.26, 7.0</td>
</tr>
<tr>
<td>Steroids(^2)</td>
<td>4.67</td>
<td>2.02, 10.3</td>
</tr>
<tr>
<td>Antibiotic use</td>
<td>2.57</td>
<td>1.2, 5.4</td>
</tr>
<tr>
<td>Chronic HF</td>
<td>2.1</td>
<td>0.98, 4.5</td>
</tr>
</tbody>
</table>

\(^1\) accumulated dose prior to admission
\(^2\) accumulated dose during admission

Guinea et al, *Clin Microbiol Infect* 2009
Study Design Schematic

Exclude patients having conditions apart from COPD that might put them at increased risk of IA:
- Hematologic malignancy (200.xx – 208.xx)
- AIDS/HIV (042)
- Bone marrow transplants (41.00 - 41.09)
- Solid organ transplants (37.51, 55.6x, 50.5x, 46.97, 33.5x, 33.6)
- Allergic Aspergillosis (sinusitis) (518.6)
- Chronic mycotic otitis externa (380.15)
- Thoracic/lung surgeries (32.3, 32.4, 32.5)
- Aplastic anemia (284.x)
- Neutropenia (288.0x)
- Reticuloendothelial / immunity disorders (279.x; EXCEPT 279.4)
- Patients discharged alive with onset of antifungal during hospital stay < 1 week
- Patients discharged alive, with hospital stay >= 1 week, but anti-fungal therapy < 1 week
- Patients < 18 years of age
- Patients not having a complete hospital stay (admission and discharge date) during the time frame

Extract COPD + Aspergillosis patients using:
- ICD-9 = 117.3x (Aspergillosis) **AND**
- ICD-9 = 491, 492, 493.2x, 496 (COPD)

Identify the “Invasive” Aspergillosis (CASES) using the following proxies:
- Pneumonia in Aspergillosis (484.6) + COPD
- Pneumonia in Cytomegalovirus infection (484.1) + COPD + Aspergillosis
- Pneumonia in Influenza (487.0) + COPD + Aspergillosis
- Pneumonia in other systemic mycosis (484.7) + COPD + Aspergillosis

Perform descriptive analysis on the CASES:
- Socio-demographic characteristics
- Mortality
- Length of treatment and switching pattern
- Length of hospitalization
- Re-hospitalization
- Procedures (surgical, mechanical ventilation)
- Total cost and cost component

Identify the matched COPD patients without aspergillosis (CONTROLS) in a case-to-control ratio of 1:2, based on age, gender, race, payer, hospital characters, geographical area, comorbidity index, and severity of illness.

Perform comparative analysis between the two cohorts on resource utilization and mortality using univariate descriptive analyses. Statistical comparisons were made using Kruskal-Wallis (non-parametric tests and Chi-square tests.)

Entire COPD cohort

Remaining COPD Patients without aspergillosis

Perspective database (>400 hospitals)

Thanks to Miriam Tarallo
Non-antibody Immunosuppressants

Antimetabolites
- Purine Synthesis Inhibitors:
 - Azathioprine
 - Mycophenylate (MMF)
 - Pentostatin
- Pyrimidine Synthesis Inhibitors:
 - Leflunomide
 - Teriflunomide
- Antifolate:
 - Methotrexate

Calcineurin Inhibitors
- Tacrolimus
- Cyclosporin
- Pimecrolimus

mTOR
- Sirolimus
- Everolimus
- Deforolimus
- Temsirolimus
- Zotarolimus

TNF-α Inhibitors
- Thalidomide
- Lenalidomide

IL-1 Receptor Antagonists
- Anakinra

Steroids

Adapted from Wikipedia
Antibody Immunosuppressants

- **Non-cellular Target**
 - Complement: Eculizimab
 - TNFs: Infliximab, Adalimumab, Certolizumab, afelimomab
 - IgE: Omalizumab
 - IL-5: Mepolizumab
 - Interferon: Faralimomab
 - IL-6: Elsilimomab
 - IL-12/13: Ustekinumab

- **Cellular Target**
 - CD3: Muronomab-CD3, Otelixizumab, Teplizumab, Vizilumab
 - CD4: Clenoxilimab, Kelixinab, Zanolibumab
 - CD20: Rituximab
 - CD40: Teneliximab
 - CD-52: Alemtuzumab
 - Integrin: Natalizumab
 - IL-6 Receptor: Tocilizumab
 - IL-2 Receptor: Basiliximab, Daclizumab

- **Others**
 - Polyclonal: Anti-thymocyte globulin
 - Fusion Proteins: Etanercept
 - CTLA-4: Abatacept, Belatacept

Adapted from Wikipedia
Background: Anti-TNF Therapy

- **Tumor Necrosis Factor**: expressed in many cells of the immune system and induces responses in both innate and adaptive immunity
- Transmembrane and soluble forms that differentially bind to two TNF receptors
- **Roles:**
 1) Recruitment of inflammatory cells
 2) Activates macrophages
 3) Regulates inflammation (induces apoptosis)
- TNF-RI (p55)- role in inflammation and granuloma formation
- TNF-RII (p75)- affects survival of macrophages

Ehlers, CID 2005
Table 2. Fungal Infections Associated With Anti-Tumor Necrosis Factor α Therapy

<table>
<thead>
<tr>
<th>Infectious agents</th>
<th>Infliximab</th>
<th>Etanercept</th>
<th>Adalimumab</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aspergillus species (n=64)</td>
<td>48</td>
<td>14</td>
<td>2</td>
</tr>
<tr>
<td>Zygomycetes (n=4)</td>
<td>3</td>
<td>NC</td>
<td>1</td>
</tr>
<tr>
<td>Candida species (n=64)</td>
<td>54</td>
<td>9</td>
<td>1</td>
</tr>
<tr>
<td>Cryptococcus species (n=28)</td>
<td>17</td>
<td>10</td>
<td>1</td>
</tr>
<tr>
<td>Blastomyces species (n=2)</td>
<td>ND</td>
<td>ND</td>
<td>ND</td>
</tr>
<tr>
<td>Coccidioides species (n=29)</td>
<td>27</td>
<td>2</td>
<td>NC</td>
</tr>
<tr>
<td>Histoplasma species (n=84)</td>
<td>72</td>
<td>8</td>
<td>4</td>
</tr>
<tr>
<td>Sporothrix species (n=1)</td>
<td>1</td>
<td>NC</td>
<td>NC</td>
</tr>
<tr>
<td>Prototheca species (n=1)</td>
<td>1</td>
<td>NC</td>
<td>NC</td>
</tr>
<tr>
<td>Tinea or pityriasis</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>versicolor (n=6)</td>
<td>3</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Total</td>
<td>226</td>
<td>44</td>
<td>11</td>
</tr>
</tbody>
</table>

a ND = no data available; NC = no cases identified.

b In this case etanercept was used as well, but symptoms worsened while the patient received infliximab.
Differential Effects of TNF-α Inhibitors

<table>
<thead>
<tr>
<th>Pathogen, type of infection</th>
<th>Infliximab group (n = 233,000)</th>
<th>Etanercept group (n = 113,000)</th>
<th>Rate ratio</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mycobacterium tuberculosis</td>
<td>335 (143.8)</td>
<td>39 (34.5)</td>
<td>4.17</td>
<td><.001</td>
</tr>
<tr>
<td>Histoplasma capsulatum</td>
<td>39 (16.7)</td>
<td>3 (2.7)</td>
<td>6.30</td>
<td><.001</td>
</tr>
<tr>
<td>Candida species</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Any</td>
<td>38 (16.3)</td>
<td>8 (7.1)</td>
<td>2.30</td>
<td>.006</td>
</tr>
<tr>
<td>NS</td>
<td>26 (11.2)</td>
<td>7 (6.2)</td>
<td>1.80</td>
<td>.065</td>
</tr>
<tr>
<td>Systemic</td>
<td>10 (4.3)</td>
<td>1 (0.9)</td>
<td>4.85</td>
<td>.046</td>
</tr>
<tr>
<td>Listeria species</td>
<td>36 (15.5)</td>
<td>2 (1.8)</td>
<td>8.73</td>
<td><.001</td>
</tr>
<tr>
<td>Mycobacterium species (NS)</td>
<td>30 (12.9)</td>
<td>7 (6.2)</td>
<td>2.08</td>
<td>.023</td>
</tr>
<tr>
<td>Aspergillus species</td>
<td>29 (12.4)</td>
<td>10 (8.8)</td>
<td>1.41</td>
<td>.17</td>
</tr>
<tr>
<td>Cryptococcus species</td>
<td>11 (4.7)</td>
<td>8 (7.1)</td>
<td>0.67</td>
<td>.91</td>
</tr>
<tr>
<td>Nocardia species</td>
<td>10 (4.3)</td>
<td>1 (0.9)</td>
<td>4.85</td>
<td>.046</td>
</tr>
<tr>
<td>Salmonella species</td>
<td>7 (3.0)</td>
<td>4 (3.5)</td>
<td>0.85</td>
<td>.75</td>
</tr>
<tr>
<td>Toxoplasma species</td>
<td>5 (2.1)</td>
<td>0 (0)</td>
<td>...</td>
<td>.088</td>
</tr>
<tr>
<td>Brucella species</td>
<td>2 (0.9)</td>
<td>0 (0)</td>
<td>...</td>
<td>.38</td>
</tr>
<tr>
<td>Bartonella species</td>
<td>1 (0.4)</td>
<td>0 (0)</td>
<td>...</td>
<td>.62</td>
</tr>
<tr>
<td>Leishmania species</td>
<td>1 (0.4)</td>
<td>0 (0)</td>
<td>...</td>
<td>.62</td>
</tr>
<tr>
<td>Mycobacterium leprae</td>
<td>1 (0.4)</td>
<td>0 (0)</td>
<td>...</td>
<td>.62</td>
</tr>
<tr>
<td>Overall</td>
<td>556 (238.6)</td>
<td>83 (73.5)</td>
<td>3.25</td>
<td><.001</td>
</tr>
</tbody>
</table>

NOTE: Data are no. of patients (no. per 100,000 patients who received the drug). NS, species was not specified.

* By χ² analysis.
* By Poisson analysis.
* Resulted in leprosy.
Anti-TNF and Aspergillosis

Multiple Studies/Registries In Progress:

1) Biologics Safety Project (SABER)
 - AHRQ/FDA-funded
 - Databases from CMS, TennCare, Kaiser Permanente

2) US Veteran’s Health Administration database
 - 330,000 unique RA/inflammatory arthritis patients

3) German biologics register (RABBITT) (2001-present)
AIDS and Aspergillosis
HIV and Aspergillosis

- Relatively uncommon infection, with an overall incidence of <1%. Is it increasing?
- 2003 NIS database of 10,400 aspergillosis cases, 3.7% in HIV-infected, incidence of 0.43%\(^1\)

Risk Factors:
- Advanced AIDS
- Neutropenia (zidovudine, sulfa)
- Steroids
- Antibiotics
- Marijuana or alcohol use
- Previous *Pneumocystis* infection
- Tuberculosis?

\(^1\) Tong et al, Int J Infect Dis 2009;13;24-36
Conclusions

• Increasing groups at risk for IA
• Data on clinical risk factors are lacking for certain groups (TNF, SOTs)
• Timing is everything
• Interest in biologic factors
• Tailoring prevention strategies to risk factors is the goal